/usr/share/perl5/Set/Infinite.pm is in libset-infinite-perl 0.63-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 | package Set::Infinite;
# Copyright (c) 2001, 2002, 2003, 2004 Flavio Soibelmann Glock.
# All rights reserved.
# This program is free software; you can redistribute it and/or
# modify it under the same terms as Perl itself.
use 5.005_03;
# These methods are inherited from Set::Infinite::Basic "as-is":
# type list fixtype numeric min max integer real new span copy
# start_set end_set universal_set empty_set minus difference
# simmetric_difference is_empty
use strict;
use base qw(Set::Infinite::Basic Exporter);
use Carp;
use Set::Infinite::Arithmetic;
use overload
'<=>' => \&spaceship,
'""' => \&as_string;
use vars qw(@EXPORT_OK $VERSION
$TRACE $DEBUG_BT $PRETTY_PRINT $inf $minus_inf $neg_inf
%_first %_last %_backtrack
$too_complex $backtrack_depth
$max_backtrack_depth $max_intersection_depth
$trace_level %level_title );
@EXPORT_OK = qw(inf $inf trace_open trace_close);
$inf = 100**100**100;
$neg_inf = $minus_inf = -$inf;
# obsolete methods - included for backward compatibility
sub inf () { $inf }
sub minus_inf () { $minus_inf }
sub no_cleanup { $_[0] }
*type = \&Set::Infinite::Basic::type;
sub compact { @_ }
BEGIN {
$VERSION = "0.63";
$TRACE = 0; # enable basic trace method execution
$DEBUG_BT = 0; # enable backtrack tracer
$PRETTY_PRINT = 0; # 0 = print 'Too Complex'; 1 = describe functions
$trace_level = 0; # indentation level when debugging
$too_complex = "Too complex";
$backtrack_depth = 0;
$max_backtrack_depth = 10; # _backtrack()
$max_intersection_depth = 5; # first()
}
sub trace { # title=>'aaa'
return $_[0] unless $TRACE;
my ($self, %parm) = @_;
my @caller = caller(1);
# print "self $self ". ref($self). "\n";
print "" . ( ' | ' x $trace_level ) .
"$parm{title} ". $self->copy .
( exists $parm{arg} ? " -- " . $parm{arg}->copy : "" ).
" $caller[1]:$caller[2] ]\n" if $TRACE == 1;
return $self;
}
sub trace_open {
return $_[0] unless $TRACE;
my ($self, %parm) = @_;
my @caller = caller(1);
print "" . ( ' | ' x $trace_level ) .
"\\ $parm{title} ". $self->copy .
( exists $parm{arg} ? " -- ". $parm{arg}->copy : "" ).
" $caller[1]:$caller[2] ]\n";
$trace_level++;
$level_title{$trace_level} = $parm{title};
return $self;
}
sub trace_close {
return $_[0] unless $TRACE;
my ($self, %parm) = @_;
my @caller = caller(0);
print "" . ( ' | ' x ($trace_level-1) ) .
"\/ $level_title{$trace_level} ".
( exists $parm{arg} ?
(
defined $parm{arg} ?
"ret ". ( UNIVERSAL::isa($parm{arg}, __PACKAGE__ ) ?
$parm{arg}->copy :
"<$parm{arg}>" ) :
"undef"
) :
"" # no arg
).
" $caller[1]:$caller[2] ]\n";
$trace_level--;
return $self;
}
# creates a 'function' object that can be solved by _backtrack()
sub _function {
my ($self, $method) = (shift, shift);
my $b = $self->empty_set();
$b->{too_complex} = 1;
$b->{parent} = $self;
$b->{method} = $method;
$b->{param} = [ @_ ];
return $b;
}
# same as _function, but with 2 arguments
sub _function2 {
my ($self, $method, $arg) = (shift, shift, shift);
unless ( $self->{too_complex} || $arg->{too_complex} ) {
return $self->$method($arg, @_);
}
my $b = $self->empty_set();
$b->{too_complex} = 1;
$b->{parent} = [ $self, $arg ];
$b->{method} = $method;
$b->{param} = [ @_ ];
return $b;
}
sub quantize {
my $self = shift;
$self->trace_open(title=>"quantize") if $TRACE;
my @min = $self->min_a;
my @max = $self->max_a;
if (($self->{too_complex}) or
(defined $min[0] && $min[0] == $neg_inf) or
(defined $max[0] && $max[0] == $inf)) {
return $self->_function( 'quantize', @_ );
}
my @a;
my %rule = @_;
my $b = $self->empty_set();
my $parent = $self;
$rule{unit} = 'one' unless $rule{unit};
$rule{quant} = 1 unless $rule{quant};
$rule{parent} = $parent;
$rule{strict} = $parent unless exists $rule{strict};
$rule{type} = $parent->{type};
my ($min, $open_begin) = $parent->min_a;
unless (defined $min) {
$self->trace_close( arg => $b ) if $TRACE;
return $b;
}
$rule{fixtype} = 1 unless exists $rule{fixtype};
$Set::Infinite::Arithmetic::Init_quantizer{$rule{unit}}->(\%rule);
$rule{sub_unit} = $Set::Infinite::Arithmetic::Offset_to_value{$rule{unit}};
carp "Quantize unit '".$rule{unit}."' not implemented" unless ref( $rule{sub_unit} ) eq 'CODE';
my ($max, $open_end) = $parent->max_a;
$rule{offset} = $Set::Infinite::Arithmetic::Value_to_offset{$rule{unit}}->(\%rule, $min);
my $last_offset = $Set::Infinite::Arithmetic::Value_to_offset{$rule{unit}}->(\%rule, $max);
$rule{size} = $last_offset - $rule{offset} + 1;
my ($index, $tmp, $this, $next);
for $index (0 .. $rule{size} ) {
# ($this, $next) = $rule{sub_unit} (\%rule, $index);
($this, $next) = $rule{sub_unit}->(\%rule, $index);
unless ( $rule{fixtype} ) {
$tmp = { a => $this , b => $next ,
open_begin => 0, open_end => 1 };
}
else {
$tmp = Set::Infinite::Basic::_simple_new($this,$next, $rule{type} );
$tmp->{open_end} = 1;
}
next if ( $rule{strict} and not $rule{strict}->intersects($tmp));
push @a, $tmp;
}
$b->{list} = \@a; # change data
$self->trace_close( arg => $b ) if $TRACE;
return $b;
}
sub _first_n {
my $self = shift;
my $n = shift;
my $tail = $self->copy;
my @result;
my $first;
for ( 1 .. $n )
{
( $first, $tail ) = $tail->first if $tail;
push @result, $first;
}
return $tail, @result;
}
sub _last_n {
my $self = shift;
my $n = shift;
my $tail = $self->copy;
my @result;
my $last;
for ( 1 .. $n )
{
( $last, $tail ) = $tail->last if $tail;
unshift @result, $last;
}
return $tail, @result;
}
sub select {
my $self = shift;
$self->trace_open(title=>"select") if $TRACE;
my %param = @_;
die "select() - parameter 'freq' is deprecated" if exists $param{freq};
my $res;
my $count;
my @by;
@by = @{ $param{by} } if exists $param{by};
$count = delete $param{count} || $inf;
# warn "select: count=$count by=[@by]";
if ($count <= 0) {
$self->trace_close( arg => $res ) if $TRACE;
return $self->empty_set();
}
my @set;
my $tail;
my $first;
my $last;
if ( @by )
{
my @res;
if ( ! $self->is_too_complex )
{
$res = $self->new;
@res = @{ $self->{list} }[ @by ] ;
}
else
{
my ( @pos_by, @neg_by );
for ( @by ) {
( $_ < 0 ) ? push @neg_by, $_ :
push @pos_by, $_;
}
my @first;
if ( @pos_by ) {
@pos_by = sort { $a <=> $b } @pos_by;
( $tail, @set ) = $self->_first_n( 1 + $pos_by[-1] );
@first = @set[ @pos_by ];
}
my @last;
if ( @neg_by ) {
@neg_by = sort { $a <=> $b } @neg_by;
( $tail, @set ) = $self->_last_n( - $neg_by[0] );
@last = @set[ @neg_by ];
}
@res = map { $_->{list}[0] } ( @first , @last );
}
$res = $self->new;
@res = sort { $a->{a} <=> $b->{a} } grep { defined } @res;
my $last;
my @a;
for ( @res ) {
push @a, $_ if ! $last || $last->{a} != $_->{a};
$last = $_;
}
$res->{list} = \@a;
}
else
{
$res = $self;
}
return $res if $count == $inf;
my $count_set = $self->empty_set();
if ( ! $self->is_too_complex )
{
my @a;
@a = grep { defined } @{ $res->{list} }[ 0 .. $count - 1 ] ;
$count_set->{list} = \@a;
}
else
{
my $last;
while ( $res ) {
( $first, $res ) = $res->first;
last unless $first;
last if $last && $last->{a} == $first->{list}[0]{a};
$last = $first->{list}[0];
push @{$count_set->{list}}, $first->{list}[0];
$count--;
last if $count <= 0;
}
}
return $count_set;
}
BEGIN {
# %_first and %_last hashes are used to backtrack the value
# of first() and last() of an infinite set
%_first = (
'complement' =>
sub {
my $self = $_[0];
my @parent_min = $self->{parent}->first;
unless ( defined $parent_min[0] ) {
return (undef, 0);
}
my $parent_complement;
my $first;
my @next;
my $parent;
if ( $parent_min[0]->min == $neg_inf ) {
my @parent_second = $parent_min[1]->first;
# (-inf..min) (second..?)
# (min..second) = complement
$first = $self->new( $parent_min[0]->complement );
$first->{list}[0]{b} = $parent_second[0]->{list}[0]{a};
$first->{list}[0]{open_end} = ! $parent_second[0]->{list}[0]{open_begin};
@{ $first->{list} } = () if
( $first->{list}[0]{a} == $first->{list}[0]{b}) &&
( $first->{list}[0]{open_begin} ||
$first->{list}[0]{open_end} );
@next = $parent_second[0]->max_a;
$parent = $parent_second[1];
}
else {
# (min..?)
# (-inf..min) = complement
$parent_complement = $parent_min[0]->complement;
$first = $self->new( $parent_complement->{list}[0] );
@next = $parent_min[0]->max_a;
$parent = $parent_min[1];
}
my @no_tail = $self->new($neg_inf,$next[0]);
$no_tail[0]->{list}[0]{open_end} = $next[1];
my $tail = $parent->union($no_tail[0])->complement;
return ($first, $tail);
}, # end: first-complement
'intersection' =>
sub {
my $self = $_[0];
my @parent = @{ $self->{parent} };
# warn "$method parents @parent";
my $retry_count = 0;
my (@first, @min, $which, $first1, $intersection);
SEARCH: while ($retry_count++ < $max_intersection_depth) {
return undef unless defined $parent[0];
return undef unless defined $parent[1];
@{$first[0]} = $parent[0]->first;
@{$first[1]} = $parent[1]->first;
unless ( defined $first[0][0] ) {
# warn "don't know first of $method";
$self->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
unless ( defined $first[1][0] ) {
# warn "don't know first of $method";
$self->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
@{$min[0]} = $first[0][0]->min_a;
@{$min[1]} = $first[1][0]->min_a;
unless ( defined $min[0][0] && defined $min[1][0] ) {
return undef;
}
# $which is the index to the bigger "first".
$which = ($min[0][0] < $min[1][0]) ? 1 : 0;
for my $which1 ( $which, 1 - $which ) {
my $tmp_parent = $parent[$which1];
($first1, $parent[$which1]) = @{ $first[$which1] };
if ( $first1->is_empty ) {
# warn "first1 empty! count $retry_count";
# trace_close;
# return $first1, undef;
$intersection = $first1;
$which = $which1;
last SEARCH;
}
$intersection = $first1->intersection( $parent[1-$which1] );
# warn "intersection with $first1 is $intersection";
unless ( $intersection->is_null ) {
# $self->trace( title=>"got an intersection" );
if ( $intersection->is_too_complex ) {
$parent[$which1] = $tmp_parent;
}
else {
$which = $which1;
last SEARCH;
}
};
}
}
if ( $#{ $intersection->{list} } > 0 ) {
my $tail;
($intersection, $tail) = $intersection->first;
$parent[$which] = $parent[$which]->union( $tail );
}
my $tmp;
if ( defined $parent[$which] and defined $parent[1-$which] ) {
$tmp = $parent[$which]->intersection ( $parent[1-$which] );
}
return ($intersection, $tmp);
}, # end: first-intersection
'union' =>
sub {
my $self = $_[0];
my (@first, @min);
my @parent = @{ $self->{parent} };
@{$first[0]} = $parent[0]->first;
@{$first[1]} = $parent[1]->first;
unless ( defined $first[0][0] ) {
# looks like one set was empty
return @{$first[1]};
}
@{$min[0]} = $first[0][0]->min_a;
@{$min[1]} = $first[1][0]->min_a;
# check min1/min2 for undef
unless ( defined $min[0][0] ) {
$self->trace_close( arg => "@{$first[1]}" ) if $TRACE;
return @{$first[1]}
}
unless ( defined $min[1][0] ) {
$self->trace_close( arg => "@{$first[0]}" ) if $TRACE;
return @{$first[0]}
}
my $which = ($min[0][0] < $min[1][0]) ? 0 : 1;
my $first = $first[$which][0];
# find out the tail
my $parent1 = $first[$which][1];
# warn $self->{parent}[$which]." - $first = $parent1";
my $parent2 = ($min[0][0] == $min[1][0]) ?
$self->{parent}[1-$which]->complement($first) :
$self->{parent}[1-$which];
my $tail;
if (( ! defined $parent1 ) || $parent1->is_null) {
# warn "union parent1 tail is null";
$tail = $parent2;
}
else {
my $method = $self->{method};
$tail = $parent1->$method( $parent2 );
}
if ( $first->intersects( $tail ) ) {
my $first2;
( $first2, $tail ) = $tail->first;
$first = $first->union( $first2 );
}
$self->trace_close( arg => "$first $tail" ) if $TRACE;
return ($first, $tail);
}, # end: first-union
'iterate' =>
sub {
my $self = $_[0];
my $parent = $self->{parent};
my ($first, $tail) = $parent->first;
$first = $first->iterate( @{$self->{param}} ) if ref($first);
$tail = $tail->_function( 'iterate', @{$self->{param}} ) if ref($tail);
my $more;
($first, $more) = $first->first if ref($first);
$tail = $tail->_function2( 'union', $more ) if defined $more;
return ($first, $tail);
},
'until' =>
sub {
my $self = $_[0];
my ($a1, $b1) = @{ $self->{parent} };
$a1->trace( title=>"computing first()" );
my @first1 = $a1->first;
my @first2 = $b1->first;
my ($first, $tail);
if ( $first2[0] <= $first1[0] ) {
# added ->first because it returns 2 spans if $a1 == $a2
$first = $a1->empty_set()->until( $first2[0] )->first;
$tail = $a1->_function2( "until", $first2[1] );
}
else {
$first = $a1->new( $first1[0] )->until( $first2[0] );
if ( defined $first1[1] ) {
$tail = $first1[1]->_function2( "until", $first2[1] );
}
else {
$tail = undef;
}
}
return ($first, $tail);
},
'offset' =>
sub {
my $self = $_[0];
my ($first, $tail) = $self->{parent}->first;
$first = $first->offset( @{$self->{param}} );
$tail = $tail->_function( 'offset', @{$self->{param}} );
my $more;
($first, $more) = $first->first;
$tail = $tail->_function2( 'union', $more ) if defined $more;
return ($first, $tail);
},
'quantize' =>
sub {
my $self = $_[0];
my @min = $self->{parent}->min_a;
if ( $min[0] == $neg_inf || $min[0] == $inf ) {
return ( $self->new( $min[0] ) , $self->copy );
}
my $first = $self->new( $min[0] )->quantize( @{$self->{param}} );
return ( $first,
$self->{parent}->
_function2( 'intersection', $first->complement )->
_function( 'quantize', @{$self->{param}} ) );
},
'tolerance' =>
sub {
my $self = $_[0];
my ($first, $tail) = $self->{parent}->first;
$first = $first->tolerance( @{$self->{param}} );
$tail = $tail->tolerance( @{$self->{param}} );
return ($first, $tail);
},
); # %_first
%_last = (
'complement' =>
sub {
my $self = $_[0];
my @parent_max = $self->{parent}->last;
unless ( defined $parent_max[0] ) {
return (undef, 0);
}
my $parent_complement;
my $last;
my @next;
my $parent;
if ( $parent_max[0]->max == $inf ) {
# (inf..min) (second..?) = parent
# (min..second) = complement
my @parent_second = $parent_max[1]->last;
$last = $self->new( $parent_max[0]->complement );
$last->{list}[0]{a} = $parent_second[0]->{list}[0]{b};
$last->{list}[0]{open_begin} = ! $parent_second[0]->{list}[0]{open_end};
@{ $last->{list} } = () if
( $last->{list}[0]{a} == $last->{list}[0]{b}) &&
( $last->{list}[0]{open_end} ||
$last->{list}[0]{open_begin} );
@next = $parent_second[0]->min_a;
$parent = $parent_second[1];
}
else {
# (min..?)
# (-inf..min) = complement
$parent_complement = $parent_max[0]->complement;
$last = $self->new( $parent_complement->{list}[-1] );
@next = $parent_max[0]->min_a;
$parent = $parent_max[1];
}
my @no_tail = $self->new($next[0], $inf);
$no_tail[0]->{list}[-1]{open_begin} = $next[1];
my $tail = $parent->union($no_tail[-1])->complement;
return ($last, $tail);
},
'intersection' =>
sub {
my $self = $_[0];
my @parent = @{ $self->{parent} };
# TODO: check max1/max2 for undef
my $retry_count = 0;
my (@last, @max, $which, $last1, $intersection);
SEARCH: while ($retry_count++ < $max_intersection_depth) {
return undef unless defined $parent[0];
return undef unless defined $parent[1];
@{$last[0]} = $parent[0]->last;
@{$last[1]} = $parent[1]->last;
unless ( defined $last[0][0] ) {
$self->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
unless ( defined $last[1][0] ) {
$self->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
@{$max[0]} = $last[0][0]->max_a;
@{$max[1]} = $last[1][0]->max_a;
unless ( defined $max[0][0] && defined $max[1][0] ) {
$self->trace( title=>"can't find max()" ) if $TRACE;
$self->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
# $which is the index to the smaller "last".
$which = ($max[0][0] > $max[1][0]) ? 1 : 0;
for my $which1 ( $which, 1 - $which ) {
my $tmp_parent = $parent[$which1];
($last1, $parent[$which1]) = @{ $last[$which1] };
if ( $last1->is_null ) {
$which = $which1;
$intersection = $last1;
last SEARCH;
}
$intersection = $last1->intersection( $parent[1-$which1] );
unless ( $intersection->is_null ) {
# $self->trace( title=>"got an intersection" );
if ( $intersection->is_too_complex ) {
$self->trace( title=>"got a too_complex intersection" ) if $TRACE;
# warn "too complex intersection";
$parent[$which1] = $tmp_parent;
}
else {
$self->trace( title=>"got an intersection" ) if $TRACE;
$which = $which1;
last SEARCH;
}
};
}
}
$self->trace( title=>"exit loop" ) if $TRACE;
if ( $#{ $intersection->{list} } > 0 ) {
my $tail;
($intersection, $tail) = $intersection->last;
$parent[$which] = $parent[$which]->union( $tail );
}
my $tmp;
if ( defined $parent[$which] and defined $parent[1-$which] ) {
$tmp = $parent[$which]->intersection ( $parent[1-$which] );
}
return ($intersection, $tmp);
},
'union' =>
sub {
my $self = $_[0];
my (@last, @max);
my @parent = @{ $self->{parent} };
@{$last[0]} = $parent[0]->last;
@{$last[1]} = $parent[1]->last;
@{$max[0]} = $last[0][0]->max_a;
@{$max[1]} = $last[1][0]->max_a;
unless ( defined $max[0][0] ) {
return @{$last[1]}
}
unless ( defined $max[1][0] ) {
return @{$last[0]}
}
my $which = ($max[0][0] > $max[1][0]) ? 0 : 1;
my $last = $last[$which][0];
# find out the tail
my $parent1 = $last[$which][1];
# warn $self->{parent}[$which]." - $last = $parent1";
my $parent2 = ($max[0][0] == $max[1][0]) ?
$self->{parent}[1-$which]->complement($last) :
$self->{parent}[1-$which];
my $tail;
if (( ! defined $parent1 ) || $parent1->is_null) {
$tail = $parent2;
}
else {
my $method = $self->{method};
$tail = $parent1->$method( $parent2 );
}
if ( $last->intersects( $tail ) ) {
my $last2;
( $last2, $tail ) = $tail->last;
$last = $last->union( $last2 );
}
return ($last, $tail);
},
'until' =>
sub {
my $self = $_[0];
my ($a1, $b1) = @{ $self->{parent} };
$a1->trace( title=>"computing last()" );
my @last1 = $a1->last;
my @last2 = $b1->last;
my ($last, $tail);
if ( $last2[0] <= $last1[0] ) {
# added ->last because it returns 2 spans if $a1 == $a2
$last = $last2[0]->until( $a1 )->last;
$tail = $a1->_function2( "until", $last2[1] );
}
else {
$last = $a1->new( $last1[0] )->until( $last2[0] );
if ( defined $last1[1] ) {
$tail = $last1[1]->_function2( "until", $last2[1] );
}
else {
$tail = undef;
}
}
return ($last, $tail);
},
'iterate' =>
sub {
my $self = $_[0];
my $parent = $self->{parent};
my ($last, $tail) = $parent->last;
$last = $last->iterate( @{$self->{param}} ) if ref($last);
$tail = $tail->_function( 'iterate', @{$self->{param}} ) if ref($tail);
my $more;
($last, $more) = $last->last if ref($last);
$tail = $tail->_function2( 'union', $more ) if defined $more;
return ($last, $tail);
},
'offset' =>
sub {
my $self = $_[0];
my ($last, $tail) = $self->{parent}->last;
$last = $last->offset( @{$self->{param}} );
$tail = $tail->_function( 'offset', @{$self->{param}} );
my $more;
($last, $more) = $last->last;
$tail = $tail->_function2( 'union', $more ) if defined $more;
return ($last, $tail);
},
'quantize' =>
sub {
my $self = $_[0];
my @max = $self->{parent}->max_a;
if (( $max[0] == $neg_inf ) || ( $max[0] == $inf )) {
return ( $self->new( $max[0] ) , $self->copy );
}
my $last = $self->new( $max[0] )->quantize( @{$self->{param}} );
if ($max[1]) { # open_end
if ( $last->min <= $max[0] ) {
$last = $self->new( $last->min - 1e-9 )->quantize( @{$self->{param}} );
}
}
return ( $last, $self->{parent}->
_function2( 'intersection', $last->complement )->
_function( 'quantize', @{$self->{param}} ) );
},
'tolerance' =>
sub {
my $self = $_[0];
my ($last, $tail) = $self->{parent}->last;
$last = $last->tolerance( @{$self->{param}} );
$tail = $tail->tolerance( @{$self->{param}} );
return ($last, $tail);
},
); # %_last
} # BEGIN
sub first {
my $self = $_[0];
unless ( exists $self->{first} ) {
$self->trace_open(title=>"first") if $TRACE;
if ( $self->{too_complex} ) {
my $method = $self->{method};
# warn "method $method ". ( exists $_first{$method} ? "exists" : "does not exist" );
if ( exists $_first{$method} ) {
@{$self->{first}} = $_first{$method}->($self);
}
else {
my $redo = $self->{parent}->$method ( @{ $self->{param} } );
@{$self->{first}} = $redo->first;
}
}
else {
return $self->SUPER::first;
}
}
return wantarray ? @{$self->{first}} : $self->{first}[0];
}
sub last {
my $self = $_[0];
unless ( exists $self->{last} ) {
$self->trace(title=>"last") if $TRACE;
if ( $self->{too_complex} ) {
my $method = $self->{method};
if ( exists $_last{$method} ) {
@{$self->{last}} = $_last{$method}->($self);
}
else {
my $redo = $self->{parent}->$method ( @{ $self->{param} } );
@{$self->{last}} = $redo->last;
}
}
else {
return $self->SUPER::last;
}
}
return wantarray ? @{$self->{last}} : $self->{last}[0];
}
# offset: offsets subsets
sub offset {
my $self = shift;
if ($self->{too_complex}) {
return $self->_function( 'offset', @_ );
}
$self->trace_open(title=>"offset") if $TRACE;
my @a;
my %param = @_;
my $b1 = $self->empty_set();
my ($interval, $ia, $i);
$param{mode} = 'offset' unless $param{mode};
unless (ref($param{value}) eq 'ARRAY') {
$param{value} = [0 + $param{value}, 0 + $param{value}];
}
$param{unit} = 'one' unless $param{unit};
my $parts = ($#{$param{value}}) / 2;
my $sub_unit = $Set::Infinite::Arithmetic::subs_offset2{$param{unit}};
my $sub_mode = $Set::Infinite::Arithmetic::_MODE{$param{mode}};
carp "unknown unit $param{unit} for offset()" unless defined $sub_unit;
carp "unknown mode $param{mode} for offset()" unless defined $sub_mode;
my ($j);
my ($cmp, $this, $next, $ib, $part, $open_begin, $open_end, $tmp);
my @value;
foreach $j (0 .. $parts) {
push @value, [ $param{value}[$j+$j], $param{value}[$j+$j + 1] ];
}
foreach $interval ( @{ $self->{list} } ) {
$ia = $interval->{a};
$ib = $interval->{b};
$open_begin = $interval->{open_begin};
$open_end = $interval->{open_end};
foreach $j (0 .. $parts) {
# print " [ofs($ia,$ib)] ";
($this, $next) = $sub_mode->( $sub_unit, $ia, $ib, @{$value[$j]} );
next if ($this > $next); # skip if a > b
if ($this == $next) {
# TODO: fix this
$open_end = $open_begin;
}
push @a, { a => $this , b => $next ,
open_begin => $open_begin , open_end => $open_end };
} # parts
} # self
@a = sort { $a->{a} <=> $b->{a} } @a;
$b1->{list} = \@a; # change data
$self->trace_close( arg => $b1 ) if $TRACE;
$b1 = $b1->fixtype if $self->{fixtype};
return $b1;
}
sub is_null {
$_[0]->{too_complex} ? 0 : $_[0]->SUPER::is_null;
}
sub is_too_complex {
$_[0]->{too_complex} ? 1 : 0;
}
# shows how a 'compacted' set looks like after quantize
sub _quantize_span {
my $self = shift;
my %param = @_;
$self->trace_open(title=>"_quantize_span") if $TRACE;
my $res;
if ($self->{too_complex}) {
$res = $self->{parent};
if ($self->{method} ne 'quantize') {
$self->trace( title => "parent is a ". $self->{method} );
if ( $self->{method} eq 'union' ) {
my $arg0 = $self->{parent}[0]->_quantize_span(%param);
my $arg1 = $self->{parent}[1]->_quantize_span(%param);
$res = $arg0->union( $arg1 );
}
elsif ( $self->{method} eq 'intersection' ) {
my $arg0 = $self->{parent}[0]->_quantize_span(%param);
my $arg1 = $self->{parent}[1]->_quantize_span(%param);
$res = $arg0->intersection( $arg1 );
}
# TODO: other methods
else {
$res = $self; # ->_function( "_quantize_span", %param );
}
$self->trace_close( arg => $res ) if $TRACE;
return $res;
}
# $res = $self->{parent};
if ($res->{too_complex}) {
$res->trace( title => "parent is complex" );
$res = $res->_quantize_span( %param );
$res = $res->quantize( @{$self->{param}} )->_quantize_span( %param );
}
else {
$res = $res->iterate (
sub {
$_[0]->quantize( @{$self->{param}} )->span;
}
);
}
}
else {
$res = $self->iterate ( sub { $_[0] } );
}
$self->trace_close( arg => $res ) if $TRACE;
return $res;
}
BEGIN {
%_backtrack = (
until => sub {
my ($self, $arg) = @_;
my $before = $self->{parent}[0]->intersection( $neg_inf, $arg->min )->max;
$before = $arg->min unless $before;
my $after = $self->{parent}[1]->intersection( $arg->max, $inf )->min;
$after = $arg->max unless $after;
return $arg->new( $before, $after );
},
iterate => sub {
my ($self, $arg) = @_;
if ( defined $self->{backtrack_callback} )
{
return $arg = $self->new( $self->{backtrack_callback}->( $arg ) );
}
my $before = $self->{parent}->intersection( $neg_inf, $arg->min )->max;
$before = $arg->min unless $before;
my $after = $self->{parent}->intersection( $arg->max, $inf )->min;
$after = $arg->max unless $after;
return $arg->new( $before, $after );
},
quantize => sub {
my ($self, $arg) = @_;
if ($arg->{too_complex}) {
return $arg;
}
else {
return $arg->quantize( @{$self->{param}} )->_quantize_span;
}
},
offset => sub {
my ($self, $arg) = @_;
# offset - apply offset with negative values
my %tmp = @{$self->{param}};
my @values = sort @{$tmp{value}};
my $backtrack_arg2 = $arg->offset(
unit => $tmp{unit},
mode => $tmp{mode},
value => [ - $values[-1], - $values[0] ] );
return $arg->union( $backtrack_arg2 ); # fixes some problems with 'begin' mode
},
);
}
sub _backtrack {
my ($self, $method, $arg) = @_;
return $self->$method ($arg) unless $self->{too_complex};
$self->trace_open( title => 'backtrack '.$self->{method} ) if $TRACE;
$backtrack_depth++;
if ( $backtrack_depth > $max_backtrack_depth ) {
carp ( __PACKAGE__ . ": Backtrack too deep " .
"(more than $max_backtrack_depth levels)" );
}
if (exists $_backtrack{ $self->{method} } ) {
$arg = $_backtrack{ $self->{method} }->( $self, $arg );
}
my $result;
if ( ref($self->{parent}) eq 'ARRAY' ) {
# has 2 parents (intersection, union, until)
my ( $result1, $result2 ) = @{$self->{parent}};
$result1 = $result1->_backtrack( $method, $arg )
if $result1->{too_complex};
$result2 = $result2->_backtrack( $method, $arg )
if $result2->{too_complex};
$method = $self->{method};
if ( $result1->{too_complex} || $result2->{too_complex} ) {
$result = $result1->_function2( $method, $result2 );
}
else {
$result = $result1->$method ($result2);
}
}
else {
# has 1 parent and parameters (offset, select, quantize, iterate)
$result = $self->{parent}->_backtrack( $method, $arg );
$method = $self->{method};
$result = $result->$method ( @{$self->{param}} );
}
$backtrack_depth--;
$self->trace_close( arg => $result ) if $TRACE;
return $result;
}
sub intersects {
my $a1 = shift;
my $b1 = (ref ($_[0]) eq ref($a1) ) ? shift : $a1->new(@_);
$a1->trace(title=>"intersects");
if ($a1->{too_complex}) {
$a1 = $a1->_backtrack('intersection', $b1 );
} # don't put 'else' here
if ($b1->{too_complex}) {
$b1 = $b1->_backtrack('intersection', $a1);
}
if (($a1->{too_complex}) or ($b1->{too_complex})) {
return undef; # we don't know the answer!
}
return $a1->SUPER::intersects( $b1 );
}
sub iterate {
my $self = shift;
my $callback = shift;
die "First argument to iterate() must be a subroutine reference"
unless ref( $callback ) eq 'CODE';
my $backtrack_callback;
if ( @_ && $_[0] eq 'backtrack_callback' )
{
( undef, $backtrack_callback ) = ( shift, shift );
}
my $set;
if ($self->{too_complex}) {
$self->trace(title=>"iterate:backtrack") if $TRACE;
$set = $self->_function( 'iterate', $callback, @_ );
}
else
{
$self->trace(title=>"iterate") if $TRACE;
$set = $self->SUPER::iterate( $callback, @_ );
}
$set->{backtrack_callback} = $backtrack_callback;
# warn "set backtrack_callback" if defined $backtrack_callback;
return $set;
}
sub intersection {
my $a1 = shift;
my $b1 = (ref ($_[0]) eq ref($a1) ) ? shift : $a1->new(@_);
$a1->trace_open(title=>"intersection", arg => $b1) if $TRACE;
if (($a1->{too_complex}) or ($b1->{too_complex})) {
my $arg0 = $a1->_quantize_span;
my $arg1 = $b1->_quantize_span;
unless (($arg0->{too_complex}) or ($arg1->{too_complex})) {
my $res = $arg0->intersection( $arg1 );
$a1->trace_close( arg => $res ) if $TRACE;
return $res;
}
}
if ($a1->{too_complex}) {
$a1 = $a1->_backtrack('intersection', $b1) unless $b1->{too_complex};
} # don't put 'else' here
if ($b1->{too_complex}) {
$b1 = $b1->_backtrack('intersection', $a1) unless $a1->{too_complex};
}
if ( $a1->{too_complex} || $b1->{too_complex} ) {
$a1->trace_close( ) if $TRACE;
return $a1->_function2( 'intersection', $b1 );
}
return $a1->SUPER::intersection( $b1 );
}
sub intersected_spans {
my $a1 = shift;
my $b1 = ref ($_[0]) eq ref($a1) ? $_[0] : $a1->new(@_);
if ($a1->{too_complex}) {
$a1 = $a1->_backtrack('intersection', $b1 ) unless $b1->{too_complex};
} # don't put 'else' here
if ($b1->{too_complex}) {
$b1 = $b1->_backtrack('intersection', $a1) unless $a1->{too_complex};
}
if ( ! $b1->{too_complex} && ! $a1->{too_complex} )
{
return $a1->SUPER::intersected_spans ( $b1 );
}
return $b1->iterate(
sub {
my $tmp = $a1->intersection( $_[0] );
return $tmp unless defined $tmp->max;
my $before = $a1->intersection( $neg_inf, $tmp->min )->last;
my $after = $a1->intersection( $tmp->max, $inf )->first;
$before = $tmp->union( $before )->first;
$after = $tmp->union( $after )->last;
$tmp = $tmp->union( $before )
if defined $before && $tmp->intersects( $before );
$tmp = $tmp->union( $after )
if defined $after && $tmp->intersects( $after );
return $tmp;
}
);
}
sub complement {
my $a1 = shift;
# do we have a parameter?
if (@_) {
my $b1 = (ref ($_[0]) eq ref($a1) ) ? shift : $a1->new(@_);
$a1->trace_open(title=>"complement", arg => $b1) if $TRACE;
$b1 = $b1->complement;
my $tmp =$a1->intersection($b1);
$a1->trace_close( arg => $tmp ) if $TRACE;
return $tmp;
}
$a1->trace_open(title=>"complement") if $TRACE;
if ($a1->{too_complex}) {
$a1->trace_close( ) if $TRACE;
return $a1->_function( 'complement', @_ );
}
return $a1->SUPER::complement;
}
sub until {
my $a1 = shift;
my $b1 = (ref ($_[0]) eq ref($a1) ) ? shift : $a1->new(@_);
if (($a1->{too_complex}) or ($b1->{too_complex})) {
return $a1->_function2( 'until', $b1 );
}
return $a1->SUPER::until( $b1 );
}
sub union {
my $a1 = shift;
my $b1 = (ref ($_[0]) eq ref($a1) ) ? shift : $a1->new(@_);
$a1->trace_open(title=>"union", arg => $b1) if $TRACE;
if (($a1->{too_complex}) or ($b1->{too_complex})) {
$a1->trace_close( ) if $TRACE;
return $a1 if $b1->is_null;
return $b1 if $a1->is_null;
return $a1->_function2( 'union', $b1);
}
return $a1->SUPER::union( $b1 );
}
# there are some ways to process 'contains':
# A CONTAINS B IF A == ( A UNION B )
# - faster
# A CONTAINS B IF B == ( A INTERSECTION B )
# - can backtrack = works for unbounded sets
sub contains {
my $a1 = shift;
$a1->trace_open(title=>"contains") if $TRACE;
if ( $a1->{too_complex} ) {
# we use intersection because it is better for backtracking
my $b0 = (ref $_[0] eq ref $a1) ? shift : $a1->new(@_);
my $b1 = $a1->intersection($b0);
if ( $b1->{too_complex} ) {
$b1->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
$a1->trace_close( arg => ($b1 == $b0 ? 1 : 0) ) if $TRACE;
return ($b1 == $b0) ? 1 : 0;
}
my $b1 = $a1->union(@_);
if ( $b1->{too_complex} ) {
$b1->trace_close( arg => 'undef' ) if $TRACE;
return undef;
}
$a1->trace_close( arg => ($b1 == $a1 ? 1 : 0) ) if $TRACE;
return ($b1 == $a1) ? 1 : 0;
}
sub min_a {
my $self = $_[0];
return @{$self->{min}} if exists $self->{min};
if ($self->{too_complex}) {
my @first = $self->first;
return @{$self->{min}} = $first[0]->min_a if defined $first[0];
return @{$self->{min}} = (undef, 0);
}
return $self->SUPER::min_a;
};
sub max_a {
my $self = $_[0];
return @{$self->{max}} if exists $self->{max};
if ($self->{too_complex}) {
my @last = $self->last;
return @{$self->{max}} = $last[0]->max_a if defined $last[0];
return @{$self->{max}} = (undef, 0);
}
return $self->SUPER::max_a;
};
sub count {
my $self = $_[0];
# NOTE: subclasses may return "undef" if necessary
return $inf if $self->{too_complex};
return $self->SUPER::count;
}
sub size {
my $self = $_[0];
if ($self->{too_complex}) {
my @min = $self->min_a;
my @max = $self->max_a;
return undef unless defined $max[0] && defined $min[0];
return $max[0] - $min[0];
}
return $self->SUPER::size;
};
sub spaceship {
my ($tmp1, $tmp2, $inverted) = @_;
carp "Can't compare unbounded sets"
if $tmp1->{too_complex} or $tmp2->{too_complex};
return $tmp1->SUPER::spaceship( $tmp2, $inverted );
}
sub _cleanup { @_ } # this subroutine is obsolete
sub tolerance {
my $self = shift;
my $tmp = pop;
if (ref($self)) {
# local
return $self->{tolerance} unless defined $tmp;
if ($self->{too_complex}) {
my $b1 = $self->_function( 'tolerance', $tmp );
$b1->{tolerance} = $tmp; # for max/min processing
return $b1;
}
return $self->SUPER::tolerance( $tmp );
}
# class method
__PACKAGE__->SUPER::tolerance( $tmp ) if defined($tmp);
return __PACKAGE__->SUPER::tolerance;
}
sub _pretty_print {
my $self = shift;
return "$self" unless $self->{too_complex};
return $self->{method} . "( " .
( ref($self->{parent}) eq 'ARRAY' ?
$self->{parent}[0] . ' ; ' . $self->{parent}[1] :
$self->{parent} ) .
" )";
}
sub as_string {
my $self = shift;
return ( $PRETTY_PRINT ? $self->_pretty_print : $too_complex )
if $self->{too_complex};
return $self->SUPER::as_string;
}
sub DESTROY {}
1;
__END__
=head1 NAME
Set::Infinite - Sets of intervals
=head1 SYNOPSIS
use Set::Infinite;
$set = Set::Infinite->new(1,2); # [1..2]
print $set->union(5,6); # [1..2],[5..6]
=head1 DESCRIPTION
Set::Infinite is a Set Theory module for infinite sets.
A set is a collection of objects.
The objects that belong to a set are called its members, or "elements".
As objects we allow (almost) anything: reals, integers, and objects (such as dates).
We allow sets to be infinite.
There is no account for the order of elements. For example, {1,2} = {2,1}.
There is no account for repetition of elements. For example, {1,2,2} = {1,1,1,2} = {1,2}.
=head1 CONSTRUCTOR
=head2 new
Creates a new set object:
$set = Set::Infinite->new; # empty set
$set = Set::Infinite->new( 10 ); # single element
$set = Set::Infinite->new( 10, 20 ); # single range
$set = Set::Infinite->new(
[ 10, 20 ], [ 50, 70 ] ); # two ranges
=over 4
=item empty set
$set = Set::Infinite->new;
=item set with a single element
$set = Set::Infinite->new( 10 );
$set = Set::Infinite->new( [ 10 ] );
=item set with a single span
$set = Set::Infinite->new( 10, 20 );
$set = Set::Infinite->new( [ 10, 20 ] );
# 10 <= x <= 20
=item set with a single, open span
$set = Set::Infinite->new(
{
a => 10, open_begin => 0,
b => 20, open_end => 1,
}
);
# 10 <= x < 20
=item set with multiple spans
$set = Set::Infinite->new( 10, 20, 100, 200 );
$set = Set::Infinite->new( [ 10, 20 ], [ 100, 200 ] );
$set = Set::Infinite->new(
{
a => 10, open_begin => 0,
b => 20, open_end => 0,
},
{
a => 100, open_begin => 0,
b => 200, open_end => 0,
}
);
=back
The C<new()> method expects I<ordered> parameters.
If you have unordered ranges, you can build the set using C<union>:
@ranges = ( [ 10, 20 ], [ -10, 1 ] );
$set = Set::Infinite->new;
$set = $set->union( @$_ ) for @ranges;
The data structures passed to C<new> must be I<immutable>.
So this is not good practice:
$set = Set::Infinite->new( $object_a, $object_b );
$object_a->set_value( 10 );
This is the recommended way to do it:
$set = Set::Infinite->new( $object_a->clone, $object_b->clone );
$object_a->set_value( 10 );
=head2 clone / copy
Creates a new object, and copy the object data.
=head2 empty_set
Creates an empty set.
If called from an existing set, the empty set inherits
the "type" and "density" characteristics.
=head2 universal_set
Creates a set containing "all" possible elements.
If called from an existing set, the universal set inherits
the "type" and "density" characteristics.
=head1 SET FUNCTIONS
=head2 union
$set = $set->union($b);
Returns the set of all elements from both sets.
This function behaves like an "OR" operation.
$set1 = new Set::Infinite( [ 1, 4 ], [ 8, 12 ] );
$set2 = new Set::Infinite( [ 7, 20 ] );
print $set1->union( $set2 );
# output: [1..4],[7..20]
=head2 intersection
$set = $set->intersection($b);
Returns the set of elements common to both sets.
This function behaves like an "AND" operation.
$set1 = new Set::Infinite( [ 1, 4 ], [ 8, 12 ] );
$set2 = new Set::Infinite( [ 7, 20 ] );
print $set1->intersection( $set2 );
# output: [8..12]
=head2 complement
=head2 minus
=head2 difference
$set = $set->complement;
Returns the set of all elements that don't belong to the set.
$set1 = new Set::Infinite( [ 1, 4 ], [ 8, 12 ] );
print $set1->complement;
# output: (-inf..1),(4..8),(12..inf)
The complement function might take a parameter:
$set = $set->minus($b);
Returns the set-difference, that is, the elements that don't
belong to the given set.
$set1 = new Set::Infinite( [ 1, 4 ], [ 8, 12 ] );
$set2 = new Set::Infinite( [ 7, 20 ] );
print $set1->minus( $set2 );
# output: [1..4]
=head2 simmetric_difference
Returns a set containing elements that are in either set,
but not in both. This is the "set" version of "XOR".
=head1 DENSITY METHODS
=head2 real
$set1 = $set->real;
Returns a set with density "0".
=head2 integer
$set1 = $set->integer;
Returns a set with density "1".
=head1 LOGIC FUNCTIONS
=head2 intersects
$logic = $set->intersects($b);
=head2 contains
$logic = $set->contains($b);
=head2 is_empty
=head2 is_null
$logic = $set->is_null;
=head2 is_nonempty
This set that has at least 1 element.
=head2 is_span
This set that has a single span or interval.
=head2 is_singleton
This set that has a single element.
=head2 is_subset( $set )
Every element of this set is a member of the given set.
=head2 is_proper_subset( $set )
Every element of this set is a member of the given set.
Some members of the given set are not elements of this set.
=head2 is_disjoint( $set )
The given set has no elements in common with this set.
=head2 is_too_complex
Sometimes a set might be too complex to enumerate or print.
This happens with sets that represent infinite recurrences, such as
when you ask for a quantization on a
set bounded by -inf or inf.
See also: C<count> method.
=head1 SCALAR FUNCTIONS
=head2 min
$i = $set->min;
=head2 max
$i = $set->max;
=head2 size
$i = $set->size;
=head2 count
$i = $set->count;
=head1 OVERLOADED OPERATORS
=head2 stringification
print $set;
$str = "$set";
See also: C<as_string>.
=head2 comparison
sort
> < == >= <= <=>
See also: C<spaceship> method.
=head1 CLASS METHODS
Set::Infinite->separators(@i)
chooses the interval separators for stringification.
default are [ ] ( ) '..' ','.
inf
returns an 'Infinity' number.
minus_inf
returns '-Infinity' number.
=head2 type
type( "My::Class::Name" )
Chooses a default object data type.
Default is none (a normal Perl SCALAR).
=head1 SPECIAL SET FUNCTIONS
=head2 span
$set1 = $set->span;
Returns the set span.
=head2 until
Extends a set until another:
0,5,7 -> until 2,6,10
gives
[0..2), [5..6), [7..10)
=head2 start_set
=head2 end_set
These methods do the inverse of the "until" method.
Given:
[0..2), [5..6), [7..10)
start_set is:
0,5,7
end_set is:
2,6,10
=head2 intersected_spans
$set = $set1->intersected_spans( $set2 );
The method returns a new set,
containing all spans that are intersected by the given set.
Unlike the C<intersection> method, the spans are not modified.
See diagram below:
set1 [....] [....] [....] [....]
set2 [................]
intersection [.] [....] [.]
intersected_spans [....] [....] [....]
=head2 quantize
quantize( parameters )
Makes equal-sized subsets.
Returns an ordered set of equal-sized subsets.
Example:
$set = Set::Infinite->new([1,3]);
print join (" ", $set->quantize( quant => 1 ) );
Gives:
[1..2) [2..3) [3..4)
=head2 select
select( parameters )
Selects set spans based on their ordered positions
C<select> has a behaviour similar to an array C<slice>.
by - default=All
count - default=Infinity
0 1 2 3 4 5 6 7 8 # original set
0 1 2 # count => 3
1 6 # by => [ -2, 1 ]
=head2 offset
offset ( parameters )
Offsets the subsets. Parameters:
value - default=[0,0]
mode - default='offset'. Possible values are: 'offset', 'begin', 'end'.
unit - type of value. Can be 'days', 'weeks', 'hours', 'minutes', 'seconds'.
=head2 iterate
iterate ( sub { } , @args )
Iterates on the set spans, over a callback subroutine.
Returns the union of all partial results.
The callback argument C<$_[0]> is a span. If there are additional arguments they are passed to the callback.
The callback can return a span, a hashref (see C<Set::Infinite::Basic>), a scalar, an object, or C<undef>.
[EXPERIMENTAL]
C<iterate> accepts an optional C<backtrack_callback> argument.
The purpose of the C<backtrack_callback> is to I<reverse> the
iterate() function, overcoming the limitations of the internal
backtracking algorithm.
The syntax is:
iterate ( sub { } , backtrack_callback => sub { }, @args )
The C<backtrack_callback> can return a span, a hashref, a scalar,
an object, or C<undef>.
For example, the following snippet adds a constant to each
element of an unbounded set:
$set1 = $set->iterate(
sub { $_[0]->min + 54, $_[0]->max + 54 },
backtrack_callback =>
sub { $_[0]->min - 54, $_[0]->max - 54 },
);
=head2 first / last
first / last
In scalar context returns the first or last interval of a set.
In list context returns the first or last interval of a set,
and the remaining set (the 'tail').
See also: C<min>, C<max>, C<min_a>, C<max_a> methods.
=head2 type
type( "My::Class::Name" )
Chooses a default object data type.
default is none (a normal perl SCALAR).
=head1 INTERNAL FUNCTIONS
=head2 _backtrack
$set->_backtrack( 'intersection', $b );
Internal function to evaluate recurrences.
=head2 numeric
$set->numeric;
Internal function to ignore the set "type".
It is used in some internal optimizations, when it is
possible to use scalar values instead of objects.
=head2 fixtype
$set->fixtype;
Internal function to fix the result of operations
that use the numeric() function.
=head2 tolerance
$set = $set->tolerance(0) # defaults to real sets (default)
$set = $set->tolerance(1) # defaults to integer sets
Internal function for changing the set "density".
=head2 min_a
($min, $min_is_open) = $set->min_a;
=head2 max_a
($max, $max_is_open) = $set->max_a;
=head2 as_string
Implements the "stringification" operator.
Stringification of unbounded recurrences is not implemented.
Unbounded recurrences are stringified as "function descriptions",
if the class variable $PRETTY_PRINT is set.
=head2 spaceship
Implements the "comparison" operator.
Comparison of unbounded recurrences is not implemented.
=head1 CAVEATS
=over 4
=item * constructor "span" notation
$set = Set::Infinite->new(10,1);
Will be interpreted as [1..10]
=item * constructor "multiple-span" notation
$set = Set::Infinite->new(1,2,3,4);
Will be interpreted as [1..2],[3..4] instead of [1,2,3,4].
You probably want ->new([1],[2],[3],[4]) instead,
or maybe ->new(1,4)
=item * "range operator"
$set = Set::Infinite->new(1..3);
Will be interpreted as [1..2],3 instead of [1,2,3].
You probably want ->new(1,3) instead.
=back
=head1 INTERNALS
The base I<set> object, without recurrences, is a C<Set::Infinite::Basic>.
A I<recurrence-set> is represented by a I<method name>,
one or two I<parent objects>, and extra arguments.
The C<list> key is set to an empty array, and the
C<too_complex> key is set to C<1>.
This is a structure that holds the union of two "complex sets":
{
too_complex => 1, # "this is a recurrence"
list => [ ], # not used
method => 'union', # function name
parent => [ $set1, $set2 ], # "leaves" in the syntax-tree
param => [ ] # optional arguments for the function
}
This is a structure that holds the complement of a "complex set":
{
too_complex => 1, # "this is a recurrence"
list => [ ], # not used
method => 'complement', # function name
parent => $set, # "leaf" in the syntax-tree
param => [ ] # optional arguments for the function
}
=head1 SEE ALSO
See modules DateTime::Set, DateTime::Event::Recurrence,
DateTime::Event::ICal, DateTime::Event::Cron
for up-to-date information on date-sets.
The perl-date-time project <http://datetime.perl.org>
=head1 AUTHOR
Flavio S. Glock <fglock@gmail.com>
=head1 COPYRIGHT
Copyright (c) 2003 Flavio Soibelmann Glock. All rights reserved.
This program is free software; you can redistribute it and/or modify
it under the same terms as Perl itself.
The full text of the license can be found in the LICENSE file included
with this module.
=cut
|