/usr/share/perl5/Statistics/Descriptive.pm is in libstatistics-descriptive-perl 3.0612-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 | package Statistics::Descriptive;
use strict;
use warnings;
##This module draws heavily from perltoot v0.4 from Tom Christiansen.
use 5.006;
use vars (qw($VERSION $Tolerance $Min_samples_number));
$VERSION = '3.0612';
$Tolerance = 0.0;
$Min_samples_number = 4;
package Statistics::Descriptive::Sparse;
use vars qw($VERSION);
$VERSION = '3.0612';
use vars qw(%fields);
use Carp;
use Statistics::Descriptive::Smoother;
sub _make_accessors
{
my ($pkg, $methods) = @_;
no strict 'refs';
foreach my $method (@$methods)
{
*{$pkg."::".$method} =
do {
my $m = $method;
sub {
my $self = shift;
if (@_)
{
$self->{$m} = shift;
}
return $self->{$m};
};
};
}
return;
}
sub _make_private_accessors
{
my ($pkg, $methods) = @_;
no strict 'refs';
foreach my $method (@$methods)
{
*{$pkg."::_".$method} =
do {
my $m = $method;
sub {
my $self = shift;
if (@_)
{
$self->{$m} = shift;
}
return $self->{$m};
};
};
}
return;
}
##Define the fields to be used as methods
%fields = (
count => 0,
mean => undef,
sum => undef,
sumsq => undef,
min => undef,
max => undef,
mindex => undef,
maxdex => undef,
sample_range => undef,
variance => undef,
);
__PACKAGE__->_make_accessors( [ grep { $_ ne "variance" } keys(%fields) ] );
__PACKAGE__->_make_accessors( ["_permitted"] );
__PACKAGE__->_make_private_accessors(["variance"]);
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
my $self = {
%fields,
};
bless ($self, $class);
$self->_permitted(\%fields);
return $self;
}
sub _is_permitted
{
my $self = shift;
my $key = shift;
return exists($self->_permitted()->{$key});
}
sub add_data {
my $self = shift; ##Myself
my $oldmean;
my ($min,$mindex,$max,$maxdex,$sum,$sumsq,$count);
my $aref;
if (ref $_[0] eq 'ARRAY') {
$aref = $_[0];
}
else {
$aref = \@_;
}
##If we were given no data, we do nothing.
return 1 if (!@{ $aref });
##Take care of appending to an existing data set
if (!defined($min = $self->min()))
{
$min = $aref->[$mindex = 0];
}
else
{
$mindex = $self->mindex();
}
if (!defined($max = $self->max()))
{
$max = $aref->[$maxdex = 0];
}
else
{
$maxdex = $self->maxdex();
}
$sum = $self->sum();
$sumsq = $self->sumsq();
$count = $self->count();
##Calculate new mean, sumsq, min and max;
foreach ( @{ $aref } ) {
$sum += $_;
$sumsq += $_**2;
$count++;
if ($_ >= $max) {
$max = $_;
$maxdex = $count-1;
}
if ($_ <= $min) {
$min = $_;
$mindex = $count-1;
}
}
$self->min($min);
$self->mindex($mindex);
$self->max($max);
$self->maxdex($maxdex);
$self->sample_range($max - $min);
$self->sum($sum);
$self->sumsq($sumsq);
$self->mean($sum / $count);
$self->count($count);
##indicator the value is not cached. Variance isn't commonly enough
##used to recompute every single data add.
$self->_variance(undef);
return 1;
}
sub standard_deviation {
my $self = shift; ##Myself
return undef if (!$self->count());
return sqrt($self->variance());
}
##Return variance; if needed, compute and cache it.
sub variance {
my $self = shift; ##Myself
my $count = $self->count();
return undef if !$count;
return 0 if $count == 1;
if (!defined($self->_variance())) {
my $variance = ($self->sumsq()- $count * $self->mean()**2);
# Sometimes due to rounding errors we get a number below 0.
# This makes sure this is handled as gracefully as possible.
#
# See:
#
# https://rt.cpan.org/Public/Bug/Display.html?id=46026
$variance = $variance < 0 ? 0 : $variance / ($count - 1);
$self->_variance($variance);
# Return now to avoid re-entering this sub
# (and therefore save time when many objects are used).
return $variance;
}
return $self->_variance();
}
##Clear a stat. More efficient than destroying an object and calling
##new.
sub clear {
my $self = shift; ##Myself
my $key;
return if (!$self->count());
while (my($field, $value) = each %fields) { # could use a slice assignment here
$self->{$field} = $value;
}
}
1;
package Statistics::Descriptive::Full;
use vars qw($VERSION);
$VERSION = '3.0612';
use Carp;
use POSIX ();
use Statistics::Descriptive::Smoother;
use vars qw(@ISA $a $b %fields);
@ISA = qw(Statistics::Descriptive::Sparse);
use List::MoreUtils ();
use List::Util ();
##Create a list of fields not to remove when data is updated
%fields = (
_permitted => undef, ##Place holder for the inherited key hash
data => undef, ##Our data
samples => undef, ##Number of samples for each value of the data set
presorted => undef, ##Flag to indicate the data is already sorted
_reserved => undef, ##Place holder for this lookup hash
);
__PACKAGE__->_make_private_accessors(
[qw(data samples frequency geometric_mean harmonic_mean
least_squares_fit median mode
skewness kurtosis median_absolute_deviation
)
]
);
__PACKAGE__->_make_accessors([qw(presorted _reserved _trimmed_mean_cache)]);
sub _clear_fields
{
my $self = shift;
# Empty array ref for holding data later!
$self->_data([]);
$self->_samples([]);
$self->_reserved(\%fields);
$self->presorted(0);
$self->_trimmed_mean_cache(+{});
return;
}
##Have to override the base method to add the data to the object
##The proxy method from above is still valid
sub new {
my $proto = shift;
my $class = ref($proto) || $proto;
# Create my self re SUPER
my $self = $class->SUPER::new();
bless ($self, $class); #Re-anneal the object
$self->_clear_fields();
return $self;
}
sub _is_reserved
{
my $self = shift;
my $field = shift;
return exists($self->_reserved->{$field});
}
sub _delete_all_cached_keys
{
my $self = shift;
my %keys = %{ $self };
# Remove reserved keys for this class from the deletion list
delete @keys{keys %{$self->_reserved}};
delete @keys{keys %{$self->_permitted}};
delete $keys{_trimmed_mean_cache};
KEYS_LOOP:
foreach my $key (keys %keys) { # Check each key in the object
delete $self->{$key}; # Delete any out of date cached key
}
$self->{_trimmed_mean_cache} = {}; # just reset this one
return;
}
##Clear a stat. More efficient than destroying an object and calling
##new.
sub clear {
my $self = shift; ##Myself
my $key;
if (!$self->count())
{
return;
}
$self->_delete_all_cached_keys();
$self->SUPER::clear();
$self->_clear_fields();
}
sub add_data {
my $self = shift; ##Myself
my $aref;
if (ref $_[0] eq 'ARRAY') {
$aref = $_[0];
}
else {
$aref = \@_;
}
##If we were given no data, we do nothing.
return 1 if (!@{ $aref });
my $oldmean;
my ($min, $max, $sum, $sumsq);
my $count = $self->count;
# $count is modified lower down, but we need this flag after that
my $has_existing_data = $count;
# Take care of appending to an existing data set
if ($has_existing_data) {
$min = $self->min();
$max = $self->max();
$sum = $self->sum();
$sumsq = $self->sumsq();
}
else {
$min = $aref->[0];
$max = $aref->[0];
$sum = 0;
$sumsq = 0;
}
# need to allow for already having data
$sum += List::Util::sum (@$aref);
$sumsq += List::Util::sum (map {$_ ** 2} @$aref);
$max = List::Util::max ($max, @$aref);
$min = List::Util::min ($min, @$aref);
$count += scalar @$aref;
my $mean = $sum / $count;
$self->min($min);
$self->max($max);
$self->sample_range($max - $min);
$self->sum($sum);
$self->sumsq($sumsq);
$self->mean($mean);
$self->count($count);
##Variance isn't commonly enough
##used to recompute every single data add, so just clear its cache.
$self->_variance(undef);
push @{ $self->_data() }, @{ $aref };
# no need to clear keys if we are a newly populated object,
# and profiling shows it takes a long time when creating
# and populating many stats objects
if ($has_existing_data) {
##Clear the presorted flag
$self->presorted(0);
$self->_delete_all_cached_keys();
}
return 1;
}
sub add_data_with_samples {
my ($self,$aref_values) = @_;
return 1 if (!@{ $aref_values });
my $aref_data = [map { keys %$_ } @{ $aref_values }];
my $aref_samples = [map { values %$_ } @{ $aref_values }];
$self->add_data($aref_data);
push @{ $self->_samples() }, @{ $aref_samples };
return 1;
}
sub get_data {
my $self = shift;
return @{ $self->_data() };
}
sub get_data_without_outliers {
my $self = shift;
if ($self->count() < $Statistics::Descriptive::Min_samples_number) {
carp("Need at least $Statistics::Descriptive::Min_samples_number samples\n");
return;
}
if (!defined $self->{_outlier_filter}) {
carp("Outliers filter not defined\n");
return;
}
my $outlier_candidate_index = $self->_outlier_candidate_index;
my $possible_outlier = ($self->_data())->[$outlier_candidate_index];
my $is_outlier = $self->{_outlier_filter}->($self, $possible_outlier);
return $self->get_data unless $is_outlier;
# Removing the outlier from the dataset
my @good_indexes = grep { $_ != $outlier_candidate_index } (0 .. $self->count() - 1);
my @data = $self->get_data;
my @filtered_data = @data[@good_indexes];
return @filtered_data;
}
sub set_outlier_filter {
my ($self, $code_ref) = @_;
if (!$code_ref || ref($code_ref) ne "CODE") {
carp("Need to pass a code reference");
return;
}
$self->{_outlier_filter} = $code_ref;
return 1;
}
sub _outlier_candidate_index {
my $self = shift;
my $mean = $self->mean();
my $outlier_candidate_index = 0;
my $max_std_deviation = abs(($self->_data())->[0] - $mean);
foreach my $idx (1 .. ($self->count() - 1) ) {
my $curr_value = ($self->_data())->[$idx];
if ($max_std_deviation < abs($curr_value - $mean) ) {
$outlier_candidate_index = $idx;
$max_std_deviation = abs($curr_value - $mean);
}
}
return $outlier_candidate_index;
}
sub set_smoother {
my ($self, $args) = @_;
$args->{data} = $self->_data();
$args->{samples} = $self->_samples();
$self->{_smoother} = Statistics::Descriptive::Smoother->instantiate($args);
}
sub get_smoothed_data {
my ($self, $args) = @_;
if (!defined $self->{_smoother}) {
carp("Smoother object not defined\n");
return;
}
$self->{_smoother}->get_smoothed_data();
}
sub maxdex {
my $self = shift;
return undef if !$self->count;
my $maxdex;
if ($self->presorted) {
$maxdex = $self->count - 1;
}
else {
my $max = $self->max;
$maxdex = List::MoreUtils::first_index {$_ == $max} $self->get_data;
}
$self->{maxdex} = $maxdex;
return $maxdex;
}
sub mindex {
my $self = shift;
return undef if !$self->count;
#my $maxdex = $self->{maxdex};
#return $maxdex if defined $maxdex;
my $mindex;
if ($self->presorted) {
$mindex = 0;
}
else {
my $min = $self->min;
$mindex = List::MoreUtils::first_index {$_ == $min} $self->get_data;
}
$self->{mindex} = $mindex;
return $mindex;
}
sub sort_data {
my $self = shift;
if (! $self->presorted())
{
##Sort the data in descending order
$self->_data([ sort {$a <=> $b} @{$self->_data()} ]);
$self->presorted(1);
##Fix the maxima and minima indices - no, this is unnecessary now we have methods
#$self->mindex(0);
#$self->maxdex($#{$self->_data()});
}
return 1;
}
sub percentile {
my $self = shift;
my $percentile = shift || 0;
##Since we're returning a single value there's no real need
##to cache this.
##If the requested percentile is less than the "percentile bin
##size" then return undef. Check description of RFC 2330 in the
##POD below.
my $count = $self->count();
if ((! $count) || ($percentile < 100 / $count))
{
return; # allow for both scalar and list context
}
$self->sort_data();
my $num = $count*$percentile/100;
my $index = &POSIX::ceil($num) - 1;
my $val = $self->_data->[$index];
return wantarray
? ($val, $index)
: $val
;
}
sub _calc_new_median
{
my $self = shift;
my $count = $self->count();
##Even or odd
if ($count % 2)
{
return $self->_data->[($count-1)/2];
}
else
{
return
(
($self->_data->[($count)/2] + $self->_data->[($count-2)/2] ) / 2
);
}
}
sub median {
my $self = shift;
return undef if !$self->count;
##Cached?
if (! defined($self->_median()))
{
$self->sort_data();
$self->_median($self->_calc_new_median());
}
return $self->_median();
}
sub quantile {
my ( $self, $QuantileNumber ) = @_;
unless ( defined $QuantileNumber and $QuantileNumber =~ m/^0|1|2|3|4$/ ) {
carp("Bad quartile type, must be 0, 1, 2, 3 or 4\n");
return;
}
# check data count after the args are checked - should help debugging
return undef if !$self->count;
$self->sort_data();
return $self->_data->[0] if ( $QuantileNumber == 0 );
my $count = $self->count();
return $self->_data->[ $count - 1 ] if ( $QuantileNumber == 4 );
my $K_quantile = ( ( $QuantileNumber / 4 ) * ( $count - 1 ) + 1 );
my $F_quantile = $K_quantile - POSIX::floor($K_quantile);
$K_quantile = POSIX::floor($K_quantile);
# interpolation
my $aK_quantile = $self->_data->[ $K_quantile - 1 ];
return $aK_quantile if ( $F_quantile == 0 );
my $aKPlus_quantile = $self->_data->[$K_quantile];
# Calcul quantile
my $quantile = $aK_quantile
+ ( $F_quantile * ( $aKPlus_quantile - $aK_quantile ) );
return $quantile;
}
sub _real_calc_trimmed_mean
{
my $self = shift;
my $lower = shift;
my $upper = shift;
my $lower_trim = int ($self->count()*$lower);
my $upper_trim = int ($self->count()*$upper);
my ($val,$oldmean) = (0,0);
my ($tm_count,$tm_mean,$index) = (0,0,$lower_trim);
$self->sort_data();
while ($index <= $self->count() - $upper_trim -1)
{
$val = $self->_data()->[$index];
$oldmean = $tm_mean;
$index++;
$tm_count++;
$tm_mean += ($val - $oldmean) / $tm_count;
}
return $tm_mean;
}
sub trimmed_mean
{
my $self = shift;
my ($lower,$upper);
#upper bound is in arg list or is same as lower
if (@_ == 1)
{
($lower,$upper) = ($_[0],$_[0]);
}
else
{
($lower,$upper) = ($_[0],$_[1]);
}
# check data count after the args
return undef if !$self->count;
##Cache
my $thistm = join ':',$lower,$upper;
my $cache = $self->_trimmed_mean_cache();
if (!exists($cache->{$thistm}))
{
$cache->{$thistm} = $self->_real_calc_trimmed_mean($lower, $upper);
}
return $cache->{$thistm};
}
sub _test_for_too_small_val
{
my $self = shift;
my $val = shift;
return (abs($val) <= $Statistics::Descriptive::Tolerance);
}
sub _calc_harmonic_mean
{
my $self = shift;
my $hs = 0;
foreach my $item ( @{$self->_data()} )
{
##Guarantee that there are no divide by zeros
if ($self->_test_for_too_small_val($item))
{
return;
}
$hs += 1/$item;
}
if ($self->_test_for_too_small_val($hs))
{
return;
}
return $self->count()/$hs;
}
sub harmonic_mean
{
my $self = shift;
if (!defined($self->_harmonic_mean()))
{
$self->_harmonic_mean(scalar($self->_calc_harmonic_mean()));
}
return $self->_harmonic_mean();
}
sub mode
{
my $self = shift;
if (!defined ($self->_mode()))
{
my $mode = 0;
my $occurances = 0;
my %count;
foreach my $item (@{ $self->_data() })
{
my $count = ++$count{$item};
if ($count > $occurances)
{
$mode = $item;
$occurances = $count;
}
}
$self->_mode(
($occurances > 1)
? {exists => 1, mode => $mode}
: {exists => 0,}
);
}
my $m = $self->_mode;
return $m->{'exists'} ? $m->{mode} : undef;
}
sub geometric_mean {
my $self = shift;
return undef if !$self->count;
if (!defined($self->_geometric_mean()))
{
my $gm = 1;
my $exponent = 1/$self->count();
for my $val (@{ $self->_data() })
{
if ($val < 0)
{
return undef;
}
$gm *= $val**$exponent;
}
$self->_geometric_mean($gm);
}
return $self->_geometric_mean();
}
sub skewness {
my $self = shift;
if (!defined($self->_skewness()))
{
my $n = $self->count();
my $sd = $self->standard_deviation();
my $skew;
# skip if insufficient records
if ( $sd && $n > 2) {
my $mean = $self->mean();
my $sum_pow3;
foreach my $rec ( $self->get_data ) {
$sum_pow3 += (($rec - $mean) / $sd) ** 3;
}
my $correction = $n / ( ($n-1) * ($n-2) );
$skew = $correction * $sum_pow3;
}
$self->_skewness($skew);
}
return $self->_skewness();
}
sub kurtosis {
my $self = shift;
if (!defined($self->_kurtosis()))
{
my $kurt;
my $n = $self->count();
my $sd = $self->standard_deviation();
if ( $sd && $n > 3) {
my $mean = $self->mean();
my $sum_pow4;
foreach my $rec ( $self->get_data ) {
$sum_pow4 += ( ($rec - $mean ) / $sd ) ** 4;
}
my $correction1 = ( $n * ($n+1) ) / ( ($n-1) * ($n-2) * ($n-3) );
my $correction2 = ( 3 * ($n-1) ** 2) / ( ($n-2) * ($n-3) );
$kurt = ( $correction1 * $sum_pow4 ) - $correction2;
}
$self->_kurtosis($kurt);
}
return $self->_kurtosis();
}
sub frequency_distribution_ref
{
my $self = shift;
my @k = ();
# Must have at least two elements
if ($self->count() < 2)
{
return undef;
}
if ((!@_) && (defined $self->_frequency()))
{
return $self->_frequency()
}
my %bins;
my $partitions = shift;
if (ref($partitions) eq 'ARRAY')
{
@k = @{ $partitions };
return undef unless @k; ##Empty array
if (@k > 1) {
##Check for monotonicity
my $element = $k[0];
for my $next_elem (@k[1..$#k]) {
if ($element > $next_elem) {
carp "Non monotonic array cannot be used as frequency bins!\n";
return undef;
}
$element = $next_elem;
}
}
%bins = map { $_ => 0 } @k;
}
else
{
return undef unless $partitions >= 1;
my $interval = $self->sample_range() / $partitions;
foreach my $idx (1 .. ($partitions-1))
{
push @k, ($self->min() + $idx * $interval);
}
$bins{$self->max()} = 0;
push @k, $self->max();
}
ELEMENT:
foreach my $element (@{$self->_data()})
{
foreach my $limit (@k)
{
if ($element <= $limit)
{
$bins{$limit}++;
next ELEMENT;
}
}
}
return $self->_frequency(\%bins);
}
sub frequency_distribution {
my $self = shift;
my $ret = $self->frequency_distribution_ref(@_);
if (!defined($ret))
{
return undef;
}
else
{
return %$ret;
}
}
sub least_squares_fit {
my $self = shift;
return () if $self->count() < 2;
##Sigma sums
my ($sigmaxy, $sigmax, $sigmaxx, $sigmayy, $sigmay) = (0,0,0,0,$self->sum);
my ($xvar, $yvar, $err);
##Work variables
my ($iter,$y,$x,$denom) = (0,0,0,0);
my $count = $self->count();
my @x;
##Outputs
my ($m, $q, $r, $rms);
if (!defined $_[1]) {
@x = 1..$self->count();
}
else {
@x = @_;
if ( $self->count() != scalar @x) {
carp "Range and domain are of unequal length.";
return ();
}
}
foreach $x (@x) {
$y = $self->_data->[$iter];
$sigmayy += $y * $y;
$sigmaxx += $x * $x;
$sigmaxy += $x * $y;
$sigmax += $x;
$iter++;
}
$denom = $count * $sigmaxx - $sigmax*$sigmax;
return ()
unless abs( $denom ) > $Statistics::Descriptive::Tolerance;
$m = ($count*$sigmaxy - $sigmax*$sigmay) / $denom;
$q = ($sigmaxx*$sigmay - $sigmax*$sigmaxy ) / $denom;
$xvar = $sigmaxx - $sigmax*$sigmax / $count;
$yvar = $sigmayy - $sigmay*$sigmay / $count;
$denom = sqrt( $xvar * $yvar );
return () unless (abs( $denom ) > $Statistics::Descriptive::Tolerance);
$r = ($sigmaxy - $sigmax*$sigmay / $count )/ $denom;
$iter = 0;
$rms = 0.0;
foreach (@x) {
##Error = Real y - calculated y
$err = $self->_data->[$iter] - ( $m * $_ + $q );
$rms += $err*$err;
$iter++;
}
$rms = sqrt($rms / $count);
$self->_least_squares_fit([$q, $m, $r, $rms]);
return @{ $self->_least_squares_fit() };
}
sub median_absolute_deviation {
my ($self) = @_;
if (!defined($self->_median_absolute_deviation()))
{
my $stat = $self->new;
$stat->add_data(map { abs($_ - $self->median) } $self->get_data);
$self->_median_absolute_deviation($stat->median);
}
return $self->_median_absolute_deviation();
}
1;
package Statistics::Descriptive;
##All modules return true.
1;
__END__
=head1 NAME
Statistics::Descriptive - Module of basic descriptive statistical functions.
=head1 SYNOPSIS
use Statistics::Descriptive;
$stat = Statistics::Descriptive::Full->new();
$stat->add_data(1,2,3,4); $mean = $stat->mean();
$var = $stat->variance();
$tm = $stat->trimmed_mean(.25);
$Statistics::Descriptive::Tolerance = 1e-10;
=head1 DESCRIPTION
This module provides basic functions used in descriptive statistics.
It has an object oriented design and supports two different types of
data storage and calculation objects: sparse and full. With the sparse
method, none of the data is stored and only a few statistical measures
are available. Using the full method, the entire data set is retained
and additional functions are available.
Whenever a division by zero may occur, the denominator is checked to be
greater than the value C<$Statistics::Descriptive::Tolerance>, which
defaults to 0.0. You may want to change this value to some small
positive value such as 1e-24 in order to obtain error messages in case
of very small denominators.
Many of the methods (both Sparse and Full) cache values so that subsequent
calls with the same arguments are faster.
=head1 METHODS
=head2 Sparse Methods
=over 5
=item $stat = Statistics::Descriptive::Sparse->new();
Create a new sparse statistics object.
=item $stat->clear();
Effectively the same as
my $class = ref($stat);
undef $stat;
$stat = new $class;
except more efficient.
=item $stat->add_data(1,2,3);
Adds data to the statistics variable. The cached statistical values are
updated automatically.
=item $stat->count();
Returns the number of data items.
=item $stat->mean();
Returns the mean of the data.
=item $stat->sum();
Returns the sum of the data.
=item $stat->variance();
Returns the variance of the data. Division by n-1 is used.
=item $stat->standard_deviation();
Returns the standard deviation of the data. Division by n-1 is used.
=item $stat->min();
Returns the minimum value of the data set.
=item $stat->mindex();
Returns the index of the minimum value of the data set.
=item $stat->max();
Returns the maximum value of the data set.
=item $stat->maxdex();
Returns the index of the maximum value of the data set.
=item $stat->sample_range();
Returns the sample range (max - min) of the data set.
=back
=head2 Full Methods
Similar to the Sparse Methods above, any Full Method that is called caches
the current result so that it doesn't have to be recalculated. In some
cases, several values can be cached at the same time.
=over 5
=item $stat = Statistics::Descriptive::Full->new();
Create a new statistics object that inherits from
Statistics::Descriptive::Sparse so that it contains all the methods
described above.
=item $stat->add_data(1,2,4,5);
Adds data to the statistics variable. All of the sparse statistical
values are updated and cached. Cached values from Full methods are
deleted since they are no longer valid.
I<Note: Calling add_data with an empty array will delete all of your
Full method cached values! Cached values for the sparse methods are
not changed>
=item $stat->add_data_with_samples([{1 => 10}, {2 => 20}, {3 => 30},]);
Add data to the statistics variable and set the number of samples each value
has been built with. The data is the key of each element of the input array
ref, while the value is the number of samples: [{data1 => smaples1}, {data2 =>
samples2}, ...].
B<NOTE:> The number of samples is only used by the smoothing function and is
ignored otherwise. It is not equivalent to repeat count. In order to repeat
a certain datum more than one time call add_data() like this:
my $value = 5;
my $repeat_count = 10;
$stat->add_data(
[ ($value) x $repeat_count ]
);
=item $stat->get_data();
Returns a copy of the data array.
=item $stat->get_data_without_outliers();
Returns a copy of the data array without outliers. The number minimum of
samples to apply the outlier filtering is C<$Statistics::Descriptive::Min_samples_number>,
4 by default.
A function to detect outliers need to be defined (see C<set_outlier_filter>),
otherwise the function will return an undef value.
The filtering will act only on the most extreme value of the data set
(i.e.: value with the highest absolute standard deviation from the mean).
If there is the need to remove more than one outlier, the filtering
need to be re-run for the next most extreme value with the initial outlier removed.
This is not always needed since the test (for example Grubb's test) usually can only detect
the most exreme value. If there is more than one extreme case in a set,
then the standard deviation will be high enough to make neither case an outlier.
=item $stat->set_outlier_filter($code_ref);
Set the function to filter out the outlier.
C<$code_ref> is the reference to the subroutine implementing the filtering
function.
Returns C<undef> for invalid values of C<$code_ref> (i.e.: not defined or not a
code reference), C<1> otherwise.
=over 4
=item
Example #1: Undefined code reference
my $stat = Statistics::Descriptive::Full->new();
$stat->add_data(1, 2, 3, 4, 5);
print $stat->set_outlier_filter(); # => undef
=item
Example #2: Valid code reference
sub outlier_filter { return $_[1] > 1; }
my $stat = Statistics::Descriptive::Full->new();
$stat->add_data( 1, 1, 1, 100, 1, );
print $stat->set_outlier_filter( \&outlier_filter ); # => 1
my @filtered_data = $stat->get_data_without_outliers();
# @filtered_data is (1, 1, 1, 1)
In this example the series is really simple and the outlier filter function as well.
For more complex series the outlier filter function might be more complex
(see Grubbs' test for outliers).
The outlier filter function will receive as first parameter the Statistics::Descriptive::Full object,
as second the value of the candidate outlier. Having the object in the function
might be useful for complex filters where statistics property are needed (again see Grubbs' test for outlier).
=back
=item $stat->set_smoother({ method => 'exponential', coeff => 0, });
Set the method used to smooth the data and the smoothing coefficient.
See C<Statistics::Smoother> for more details.
=item $stat->get_smoothed_data();
Returns a copy of the smoothed data array.
The smoothing method and coefficient need to be defined (see C<set_smoother>),
otherwise the function will return an undef value.
=item $stat->sort_data();
Sort the stored data and update the mindex and maxdex methods. This
method uses perl's internal sort.
=item $stat->presorted(1);
=item $stat->presorted();
If called with a non-zero argument, this method sets a flag that says
the data is already sorted and need not be sorted again. Since some of
the methods in this class require sorted data, this saves some time.
If you supply sorted data to the object, call this method to prevent
the data from being sorted again. The flag is cleared whenever add_data
is called. Calling the method without an argument returns the value of
the flag.
=item $stat->skewness();
Returns the skewness of the data.
A value of zero is no skew, negative is a left skewed tail,
positive is a right skewed tail.
This is consistent with Excel.
=item $stat->kurtosis();
Returns the kurtosis of the data.
Positive is peaked, negative is flattened.
=item $x = $stat->percentile(25);
=item ($x, $index) = $stat->percentile(25);
Sorts the data and returns the value that corresponds to the
percentile as defined in RFC2330:
=over 4
=item
For example, given the 6 measurements:
-2, 7, 7, 4, 18, -5
Then F(-8) = 0, F(-5) = 1/6, F(-5.0001) = 0, F(-4.999) = 1/6, F(7) =
5/6, F(18) = 1, F(239) = 1.
Note that we can recover the different measured values and how many
times each occurred from F(x) -- no information regarding the range
in values is lost. Summarizing measurements using histograms, on the
other hand, in general loses information about the different values
observed, so the EDF is preferred.
Using either the EDF or a histogram, however, we do lose information
regarding the order in which the values were observed. Whether this
loss is potentially significant will depend on the metric being
measured.
We will use the term "percentile" to refer to the smallest value of x
for which F(x) >= a given percentage. So the 50th percentile of the
example above is 4, since F(4) = 3/6 = 50%; the 25th percentile is
-2, since F(-5) = 1/6 < 25%, and F(-2) = 2/6 >= 25%; the 100th
percentile is 18; and the 0th percentile is -infinity, as is the 15th
percentile, which for ease of handling and backward compatibility is returned
as undef() by the function.
Care must be taken when using percentiles to summarize a sample,
because they can lend an unwarranted appearance of more precision
than is really available. Any such summary must include the sample
size N, because any percentile difference finer than 1/N is below the
resolution of the sample.
=back
(Taken from:
I<RFC2330 - Framework for IP Performance Metrics>,
Section 11.3. Defining Statistical Distributions.
RFC2330 is available from:
L<http://www.ietf.org/rfc/rfc2330.txt> .)
If the percentile method is called in a list context then it will
also return the index of the percentile.
=item $x = $stat->quantile($Type);
Sorts the data and returns estimates of underlying distribution quantiles based on one
or two order statistics from the supplied elements.
This method use the same algorithm as Excel and R language (quantile B<type 7>).
The generic function quantile produces sample quantiles corresponding to the given probabilities.
B<$Type> is an integer value between 0 to 4 :
0 => zero quartile (Q0) : minimal value
1 => first quartile (Q1) : lower quartile = lowest cut off (25%) of data = 25th percentile
2 => second quartile (Q2) : median = it cuts data set in half = 50th percentile
3 => third quartile (Q3) : upper quartile = highest cut off (25%) of data, or lowest 75% = 75th percentile
4 => fourth quartile (Q4) : maximal value
Exemple :
my @data = (1..10);
my $stat = Statistics::Descriptive::Full->new();
$stat->add_data(@data);
print $stat->quantile(0); # => 1
print $stat->quantile(1); # => 3.25
print $stat->quantile(2); # => 5.5
print $stat->quantile(3); # => 7.75
print $stat->quantile(4); # => 10
=item $stat->median();
Sorts the data and returns the median value of the data.
=item $stat->harmonic_mean();
Returns the harmonic mean of the data. Since the mean is undefined
if any of the data are zero or if the sum of the reciprocals is zero,
it will return undef for both of those cases.
=item $stat->geometric_mean();
Returns the geometric mean of the data.
=item my $mode = $stat->mode();
Returns the mode of the data. The mode is the most commonly occuring datum.
See L<http://en.wikipedia.org/wiki/Mode_%28statistics%29> . If all values
occur only once, then mode() will return undef.
=item $stat->trimmed_mean(ltrim[,utrim]);
C<trimmed_mean(ltrim)> returns the mean with a fraction C<ltrim>
of entries at each end dropped. C<trimmed_mean(ltrim,utrim)>
returns the mean after a fraction C<ltrim> has been removed from the
lower end of the data and a fraction C<utrim> has been removed from the
upper end of the data. This method sorts the data before beginning
to analyze it.
All calls to trimmed_mean() are cached so that they don't have to be
calculated a second time.
=item $stat->frequency_distribution_ref($partitions);
=item $stat->frequency_distribution_ref(\@bins);
=item $stat->frequency_distribution_ref();
C<frequency_distribution_ref($partitions)> slices the data into
C<$partition> sets (where $partition is greater than 1) and counts the
number of items that fall into each partition. It returns a reference to
a hash where the keys are the numerical values of the
partitions used. The minimum value of the data set is not a key and the
maximum value of the data set is always a key. The number of entries
for a particular partition key are the number of items which are
greater than the previous partition key and less then or equal to the
current partition key. As an example,
$stat->add_data(1,1.5,2,2.5,3,3.5,4);
$f = $stat->frequency_distribution_ref(2);
for (sort {$a <=> $b} keys %$f) {
print "key = $_, count = $f->{$_}\n";
}
prints
key = 2.5, count = 4
key = 4, count = 3
since there are four items less than or equal to 2.5, and 3 items
greater than 2.5 and less than 4.
C<frequency_distribution_refs(\@bins)> provides the bins that are to be used
for the distribution. This allows for non-uniform distributions as
well as trimmed or sample distributions to be found. C<@bins> must
be monotonic and contain at least one element. Note that unless the
set of bins contains the range that the total counts returned will
be less than the sample size.
Calling C<frequency_distribution_ref()> with no arguments returns the last
distribution calculated, if such exists.
=item my %hash = $stat->frequency_distribution($partitions);
=item my %hash = $stat->frequency_distribution(\@bins);
=item my %hash = $stat->frequency_distribution();
Same as C<frequency_distribution_ref()> except that returns the hash clobbered
into the return list. Kept for compatibility reasons with previous
versions of Statistics::Descriptive and using it is discouraged.
=item $stat->least_squares_fit();
=item $stat->least_squares_fit(@x);
C<least_squares_fit()> performs a least squares fit on the data,
assuming a domain of C<@x> or a default of 1..$stat->count(). It
returns an array of four elements C<($q, $m, $r, $rms)> where
=over 4
=item C<$q and $m>
satisfy the equation C($y = $m*$x + $q).
=item C<$r>
is the Pearson linear correlation cofficient.
=item C<$rms>
is the root-mean-square error.
=back
If case of error or division by zero, the empty list is returned.
The array that is returned can be "coerced" into a hash structure
by doing the following:
my %hash = ();
@hash{'q', 'm', 'r', 'err'} = $stat->least_squares_fit();
Because calling C<least_squares_fit()> with no arguments defaults
to using the current range, there is no caching of the results.
=back
=head1 REPORTING ERRORS
I read my email frequently, but since adopting this module I've added 2
children and 1 dog to my family, so please be patient about my response
times. When reporting errors, please include the following to help
me out:
=over 4
=item *
Your version of perl. This can be obtained by typing perl C<-v> at
the command line.
=item *
Which version of Statistics::Descriptive you're using. As you can
see below, I do make mistakes. Unfortunately for me, right now
there are thousands of CD's with the version of this module with
the bugs in it. Fortunately for you, I'm a very patient module
maintainer.
=item *
Details about what the error is. Try to narrow down the scope
of the problem and send me code that I can run to verify and
track it down.
=back
=head1 AUTHOR
Current maintainer:
Shlomi Fish, L<http://www.shlomifish.org/> , C<shlomif@cpan.org>
Previously:
Colin Kuskie
My email address can be found at http://www.perl.com under Who's Who
or at: https://metacpan.org/author/COLINK .
=head1 CONTRIBUTORS
Fabio Ponciroli & Adzuna Ltd. team (outliers handling)
=head1 REFERENCES
RFC2330, Framework for IP Performance Metrics
The Art of Computer Programming, Volume 2, Donald Knuth.
Handbook of Mathematica Functions, Milton Abramowitz and Irene Stegun.
Probability and Statistics for Engineering and the Sciences, Jay Devore.
=head1 COPYRIGHT
Copyright (c) 1997,1998 Colin Kuskie. All rights reserved. This
program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
Copyright (c) 1998 Andrea Spinelli. All rights reserved. This program
is free software; you can redistribute it and/or modify it under the
same terms as Perl itself.
Copyright (c) 1994,1995 Jason Kastner. All rights
reserved. This program is free software; you can redistribute it
and/or modify it under the same terms as Perl itself.
=head1 LICENSE
This program is free software; you can redistribute it and/or modify it
under the same terms as Perl itself.
=cut
|