This file is indexed.

/usr/share/perl5/Tree/Binary2.pm is in libtree-perl 1.07-0ubuntu1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
package Tree::Binary2;

use 5.006;

use strict;
use warnings FATAL => 'all';

use Scalar::Util qw( blessed );

use base qw( Tree );

our $VERSION = '1.07';

sub _init {
    my $self = shift;
    $self->SUPER::_init( @_ );

    # Make this class a complete binary tree,
    # filling in with Tree::Null as appropriate.
    $self->{_children}->[$_] = $self->_null
        for 0 .. 1;

    return $self;
}

sub left {
    my $self = shift;
    return $self->_set_get_child( 0, @_ );
}

sub right {
    my $self = shift;
    return $self->_set_get_child( 1, @_ );
}

sub _set_get_child {
    my $self = shift;
    my $index = shift;

    if ( @_ ) {
        my $node = shift;
        $node = $self->_null unless $node;

        my $old = $self->children->[$index];
        $self->children->[$index] = $node;

        if ( $node ) {
            $node->_set_parent( $self );
            $node->_set_root( $self->root );
            $node->_fix_depth;
        }

        if ( $old ) {
            $old->_set_parent( $old->_null );
            $old->_set_root( $old->_null );
            $old->_fix_depth;
        }

        $self->_fix_height;
        $self->_fix_width;

        return $self;
    }
    else {
        return $self->children->[$index];
    }
}

sub _clone_children {
    my ($self, $clone) = @_;

    @{ $clone->{_children} } = ();
    $clone->add_child({}, map { $_->clone } @{ $self->{_children} });
}

sub children {
    my $self = shift;
    if ( @_ ) {
        my @idx = @_;
        return @{$self->{_children}}[@idx];
    }
    else {
        if ( caller->isa( __PACKAGE__ ) || $self->isa( scalar(caller) ) ) {
            return wantarray ? @{$self->{_children}} : $self->{_children};
        }
        else {
            return grep { $_ } @{$self->{_children}};
        }
    }
}

use constant IN_ORDER => 4;

# One of the things we have to do in a traversal is to remove all of the
# Tree::Null elements that are appended to the tree to make this a complete
# binary tree. The user isn't going to expect them, because they're an
# internal nicety.

sub traverse {
    my $self = shift;
    my $order = shift;
    $order = $self->PRE_ORDER unless $order;

    if ( wantarray ) {
        if ( $order == $self->IN_ORDER ) {
            return grep { $_ } (
                $self->left->traverse( $order ),
                $self,
                $self->right->traverse( $order ),
            );
        }
        else {
            return grep { $_ } $self->SUPER::traverse( $order );
        }
    }
    else {
        my $closure;

        if ( $order eq $self->IN_ORDER ) {
            my @list = $self->traverse( $order );

            $closure = sub {
                return unless @list;
                return shift @list;
            };
        }
        elsif ( $order eq $self->PRE_ORDER ) {
            my $next_node = $self;
            my @stack = ( $self );
            my @next_meth = ( 0 );

            my @meths = qw( left right );
            $closure = sub {
                my $node = $next_node;
                return unless $node;
                $next_node = undef;

                while ( @stack && !$next_node ) {
                    while ( @next_meth && $next_meth[0] == 2 ) {
                        shift @stack;
                        shift @next_meth;
                    }

                    if ( @stack ) {
                        my $meth = $meths[ $next_meth[0]++ ];
                        $next_node = $stack[0]->$meth;
                        next unless $next_node;
                        unshift @stack, $next_node;
                        unshift @next_meth, 0;
                    }
                }

                return $node;
            };
        }
        elsif ( $order eq $self->POST_ORDER ) {
            my @list = $self->traverse( $order );

            $closure = sub {
                return unless @list;
                return shift @list;
            };
            #my @stack = ( $self );
            #my @next_idx = ( 0 );
            #while ( @{ $stack[0]->{_children} } ) {
            #    unshift @stack, $stack[0]->{_children}[0];
            #    unshift @next_idx, 0;
            #}
            #
            #$closure = sub {
            #    my $node = $stack[0] || return;
            #
            #    shift @stack; shift @next_idx;
            #    $next_idx[0]++;
            #
            #    while ( @stack && exists $stack[0]->{_children}[ $next_idx[0] ] ) {
            #        unshift @stack, $stack[0]->{_children}[ $next_idx[0] ];
            #        unshift @next_idx, 0;
            #    }
            #
            #    return $node;
            #};
        }
        elsif ( $order eq $self->LEVEL_ORDER ) {
            my @nodes = ($self);
            $closure = sub {
                my $node = shift @nodes;
                return unless $node;
                push @nodes, grep { $_ } @{$node->{_children}};
                return $node;
            };
        }
        else {
            return $self->error( "traverse(): '$order' is an illegal traversal order" );
        }

        return $closure;
    }
}

1;
__END__

=head1 NAME

Tree::Binary2 - An implementation of a binary tree

=head1 SYNOPSIS

  my $tree = Tree::Binary2->new( 'root' );

  my $left = Tree::Binary2->new( 'left' );
  $tree->left( $left );

  my $right = Tree::Binary2->new( 'left' );
  $tree->right( $right );

  my $right_child = $tree->right;

  $tree->right( undef ); # Unset the right child.

  my @nodes = $tree->traverse( $tree->POST_ORDER );

  my $traversal = $tree->traverse( $tree->IN_ORDER );
  while ( my $node = $traversal->() ) {
      # Do something with $node here
  }

=head1 DESCRIPTION

This is an implementation of a binary tree. This class inherits from L<Tree>,
which is an N-ary tree implemenation. Because of this, this class actually
provides an implementation of a complete binary tree vs. a sparse binary tree.
The empty nodes are instances of Tree::Null, which is described in L<Tree>.
This should have no effect on your usage of this class.

=head1 METHODS

In addition to the methods provided by L<Tree>, the following items are
provided or overriden.

=over 4

=item * C<left([$child])> / C<right([$child])>

These access the left and right children, respectively. They are mutators,
which means that their behavior changes depending on if you pass in a value.

If you do not pass in any parameters, then it will act as a getter for the
specific child, return the child (if set) or undef (if not).

If you pass in a child, it will act as a setter for the specific child,
setting the child to the passed-in value and returning the $tree. (Thus, this
method chains.)

If you wish to unset the child, do C<$treeE<gt>left( undef );>

=item * C<children()>

This will return the children of the tree.

B<NOTE:> There will be two children, always. Tree::Binary2 implements a
complete binary tree, filling in missing children with Tree::Null objects.
(Please see L<Tree::Fast> for more information on Tree::Null.)

=item * B<traverse( [$order] )>

When called in list context (C<my @traversal = $tree-E<gt>traverse()>), this will
return a list of the nodes in the given traversal order. When called in scalar
context (C<my $traversal = $tree-E<gt>traverse()>), this will return a closure
that will, over successive calls, iterate over the nodes in the given
traversal order. When finished it will return false.

The default traversal order is pre-order.

In addition to the traversal orders provided by L<Tree>, Tree::Binary2 provides
in-order traversals.

=over 4

=item * In-order

This will return the result of an in-order traversal on the left node (if
any), then the node, then the result of an in-order traversal on the right
node (if any).

=back

=back

B<NOTE:> You have access to all the methods provided by L<Tree>, but it is not
recommended that you use many of them, unless you know what you're doing. This
list includes C<add_child()> and C<remove_child()>.

=head1 TODO

=over 4

=item * Make in-order closure traversal work iteratively

=item * Make post-order closure traversal work iteratively

=back

=head1 CODE COVERAGE

Please see the relevant sections of L<Tree>.

=head1 SUPPORT

Please see the relevant sections of L<Tree>.

=head1 AUTHORS

Rob Kinyon E<lt>rob.kinyon@iinteractive.comE<gt>

Stevan Little E<lt>stevan.little@iinteractive.comE<gt>

Thanks to Infinity Interactive for generously donating our time.

=head1 COPYRIGHT AND LICENSE

Copyright 2004, 2005 by Infinity Interactive, Inc.

L<http://www.iinteractive.com>

This library is free software; you can redistribute it and/or modify it under
the same terms as Perl itself.

=cut