This file is indexed.

/usr/include/viennacl/linalg/lu.hpp is in libviennacl-dev 1.7.1+dfsg1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
#ifndef VIENNACL_LINALG_LU_HPP
#define VIENNACL_LINALG_LU_HPP

/* =========================================================================
   Copyright (c) 2010-2016, Institute for Microelectronics,
                            Institute for Analysis and Scientific Computing,
                            TU Wien.
   Portions of this software are copyright by UChicago Argonne, LLC.

                            -----------------
                  ViennaCL - The Vienna Computing Library
                            -----------------

   Project Head:    Karl Rupp                   rupp@iue.tuwien.ac.at

   (A list of authors and contributors can be found in the manual)

   License:         MIT (X11), see file LICENSE in the base directory
============================================================================= */

/** @file viennacl/linalg/lu.hpp
    @brief Implementations of LU factorization for row-major and column-major dense matrices.
*/

#include <algorithm>    //for std::min

#include "viennacl/matrix.hpp"
#include "viennacl/matrix_proxy.hpp"

#include "viennacl/linalg/prod.hpp"
#include "viennacl/linalg/direct_solve.hpp"

namespace viennacl
{
namespace linalg
{
/** @brief LU factorization of a row-major dense matrix.
*
* @param A    The system matrix, where the LU matrices are directly written to. The implicit unit diagonal of L is not written.
*/
template<typename NumericT>
void lu_factorize(matrix<NumericT, viennacl::row_major> & A)
{
  typedef matrix<NumericT, viennacl::row_major>  MatrixType;

  vcl_size_t max_block_size = 32;
  vcl_size_t num_blocks = (A.size2() - 1) / max_block_size + 1;
  std::vector<NumericT> temp_buffer(A.internal_size2() * max_block_size);

  // Iterate over panels
  for (vcl_size_t panel_id = 0; panel_id < num_blocks; ++panel_id)
  {
    vcl_size_t row_start = panel_id * max_block_size;
    vcl_size_t current_block_size = std::min<vcl_size_t>(A.size1() - row_start, max_block_size);

    viennacl::range     block_range(row_start, row_start + current_block_size);
    viennacl::range remainder_range(row_start + current_block_size, A.size1());

    //
    // Perform LU factorization on panel:
    //


    // Read from matrix to buffer:
    viennacl::backend::memory_read(A.handle(),
                                   sizeof(NumericT) * row_start          * A.internal_size2(),
                                   sizeof(NumericT) * current_block_size * A.internal_size2(),
                                   &(temp_buffer[0]));

    // Factorize (kij-version):
    for (vcl_size_t k=0; k < current_block_size - 1; ++k)
    {
      for (vcl_size_t i=k+1; i < current_block_size; ++i)
      {
        temp_buffer[row_start + i * A.internal_size2() + k] /= temp_buffer[row_start + k * A.internal_size2() + k];  // write l_ik

        NumericT l_ik = temp_buffer[row_start + i * A.internal_size2() + k];

        for (vcl_size_t j = row_start + k + 1; j < A.size1(); ++j)
          temp_buffer[i * A.internal_size2() + j] -= l_ik * temp_buffer[k * A.internal_size2() + j];  // l_ik * a_kj
      }
    }

    // Write back:
    viennacl::backend::memory_write(A.handle(),
                                    sizeof(NumericT) * row_start          * A.internal_size2(),
                                    sizeof(NumericT) * current_block_size * A.internal_size2(),
                                    &(temp_buffer[0]));

    if (remainder_range.size() > 0)
    {
      //
      // Compute L_12 = [ (U_11)^{T}^{-1} A_{21}^T ]^T
      //
      viennacl::matrix_range<MatrixType> U_11(A, block_range,     block_range);
      viennacl::matrix_range<MatrixType> A_21(A, remainder_range, block_range);
      viennacl::linalg::inplace_solve(trans(U_11), trans(A_21), viennacl::linalg::lower_tag());

      //
      // Update remainder of A
      //
      viennacl::matrix_range<MatrixType> L_21(A, remainder_range, block_range);
      viennacl::matrix_range<MatrixType> U_12(A, block_range,     remainder_range);
      viennacl::matrix_range<MatrixType> A_22(A, remainder_range, remainder_range);

      A_22 -= viennacl::linalg::prod(L_21, U_12);
    }
  }

}


/** @brief LU factorization of a column-major dense matrix.
*
* @param A    The system matrix, where the LU matrices are directly written to. The implicit unit diagonal of L is not written.
*/
template<typename NumericT>
void lu_factorize(matrix<NumericT, viennacl::column_major> & A)
{
  typedef matrix<NumericT, viennacl::column_major>  MatrixType;

  vcl_size_t max_block_size = 32;
  vcl_size_t num_blocks = (A.size1() - 1) / max_block_size + 1;
  std::vector<NumericT> temp_buffer(A.internal_size1() * max_block_size);

  // Iterate over panels
  for (vcl_size_t panel_id = 0; panel_id < num_blocks; ++panel_id)
  {
    vcl_size_t col_start = panel_id * max_block_size;
    vcl_size_t current_block_size = std::min<vcl_size_t>(A.size1() - col_start, max_block_size);

    viennacl::range     block_range(col_start, col_start + current_block_size);
    viennacl::range remainder_range(col_start + current_block_size, A.size1());

    //
    // Perform LU factorization on panel:
    //


    // Read from matrix to buffer:
    viennacl::backend::memory_read(A.handle(),
                                   sizeof(NumericT) * col_start          * A.internal_size1(),
                                   sizeof(NumericT) * current_block_size * A.internal_size1(),
                                   &(temp_buffer[0]));

    // Factorize (kji-version):
    for (vcl_size_t k=0; k < current_block_size; ++k)
    {
      NumericT a_kk = temp_buffer[col_start + k + k * A.internal_size1()];
      for (vcl_size_t i=col_start+k+1; i < A.size1(); ++i)
        temp_buffer[i + k * A.internal_size1()] /= a_kk;  // write l_ik

      for (vcl_size_t j=k+1; j < current_block_size; ++j)
      {
        NumericT a_kj = temp_buffer[col_start + k + j * A.internal_size1()];
        for (vcl_size_t i=col_start+k+1; i < A.size1(); ++i)
          temp_buffer[i + j * A.internal_size1()] -= temp_buffer[i + k * A.internal_size1()] * a_kj;  // l_ik * a_kj
      }
    }

    // Write back:
    viennacl::backend::memory_write(A.handle(),
                                    sizeof(NumericT) * col_start          * A.internal_size1(),
                                    sizeof(NumericT) * current_block_size * A.internal_size1(),
                                    &(temp_buffer[0]));

    if (remainder_range.size() > 0)
    {
      //
      // Compute U_12:
      //
      viennacl::matrix_range<MatrixType> L_11(A, block_range,     block_range);
      viennacl::matrix_range<MatrixType> A_12(A, block_range, remainder_range);
      viennacl::linalg::inplace_solve(L_11, A_12, viennacl::linalg::unit_lower_tag());

      //
      // Update remainder of A
      //
      viennacl::matrix_range<MatrixType> L_21(A, remainder_range, block_range);
      viennacl::matrix_range<MatrixType> U_12(A, block_range,     remainder_range);
      viennacl::matrix_range<MatrixType> A_22(A, remainder_range, remainder_range);

      A_22 -= viennacl::linalg::prod(L_21, U_12);
    }

  }

}


//
// Convenience layer:
//

/** @brief LU substitution for the system LU = rhs.
*
* @param A    The system matrix, where the LU matrices are directly written to. The implicit unit diagonal of L is not written.
* @param B    The matrix of load vectors, where the solution is directly written to
*/
template<typename NumericT, typename F1, typename F2, unsigned int AlignmentV1, unsigned int AlignmentV2>
void lu_substitute(matrix<NumericT, F1, AlignmentV1> const & A,
                   matrix<NumericT, F2, AlignmentV2> & B)
{
  assert(A.size1() == A.size2() && bool("Matrix must be square"));
  assert(A.size1() == B.size1() && bool("Matrix must be square"));
  inplace_solve(A, B, unit_lower_tag());
  inplace_solve(A, B, upper_tag());
}

/** @brief LU substitution for the system LU = rhs.
*
* @param A      The system matrix, where the LU matrices are directly written to. The implicit unit diagonal of L is not written.
* @param vec    The load vector, where the solution is directly written to
*/
template<typename NumericT, typename F, unsigned int MatAlignmentV, unsigned int VecAlignmentV>
void lu_substitute(matrix<NumericT, F, MatAlignmentV> const & A,
                   vector<NumericT, VecAlignmentV> & vec)
{
  assert(A.size1() == A.size2() && bool("Matrix must be square"));
  inplace_solve(A, vec, unit_lower_tag());
  inplace_solve(A, vec, upper_tag());
}

}
}

#endif