/usr/share/mozart/doc/fdt/index.html is in mozart-doc 1.4.0-8ubuntu1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 | <!DOCTYPE html PUBLIC "-//W3C//DTD HTML 4.0 Transitional//EN">
<HTML><HEAD><TITLE>Finite Domain Constraint Programming in Oz. A Tutorial.</TITLE><LINK href="ozdoc.css" rel="stylesheet" type="text/css"></HEAD><BODY><P class="margin"><A href="../index.html">Top</A><BR><A href="http://www.mozart-oz.org/download/view.cgi?action=print&class=tutorial&name=FiniteDomainProgramming">Print</A></P><H1 align="center" class="title">Finite Domain Constraint Programming in Oz. A Tutorial.</H1><H2 align="center" class="authors"><A href="http://www.ps.uni-sb.de/~schulte/">Christian Schulte</A> and <A href="http://www.ps.uni-sb.de/~smolka/">Gert Smolka</A></H2><P></P><DIV align="center"><IMG alt="" src="fdt.gif"></DIV><P></P><BLOCKQUOTE><P>This document is an introduction to constraint programming in Oz. We restrict our attention to combinatorial problems that can be stated with variables ranging over finite sets of nonnegative integers. Problems in this class range from puzzles to real world applications as diverse as scheduling, ware house allocation, configuration and placement. </P></BLOCKQUOTE><HR><UL class="toc"><LI><A href="toc.html#label1">Table of Contents</A></LI></UL><UL class="toc"><LI><A href="node1.html#chapter.intro">1 Introduction</A></LI></UL><UL class="toc"><LI><A href="node2.html#chapter.constraints">2 Propagate and Distribute</A></LI></UL><UL class="toc"><LI><A href="node13.html#chapter.problem">3 Writing Problem Solvers in Oz</A></LI></UL><UL class="toc"><LI><A href="node20.html#chapter.elimination">4 Elimination of Symmetries and Defined Constraints</A></LI></UL><UL class="toc"><LI><A href="node24.html#chapter.scripts">5 Parameterized Scripts</A></LI></UL><UL class="toc"><LI><A href="node27.html#chapter.minimizing">6 Minimizing a Cost Function</A></LI></UL><UL class="toc"><LI><A href="node30.html#chapter.propagators">7 Propagators for Redundant Constraints</A></LI></UL><UL class="toc"><LI><A href="node35.html#chapter.reified">8 Reified Constraints</A></LI></UL><UL class="toc"><LI><A href="node40.html#chapter.user-defined">9 User-Defined Distributors</A></LI></UL><UL class="toc"><LI><A href="node43.html#chapter.bab">10 Branch and Bound</A></LI></UL><UL class="toc"><LI><A href="node46.html#chapter.scheduling">11 Scheduling</A></LI></UL><UL class="toc"><LI><A href="node52.html#appendix.traps">A Traps and Pitfalls</A></LI></UL><UL class="toc"><LI><A href="node53.html#appendix.golden-rules">B Golden Rules</A></LI></UL><UL class="toc"><LI><A href="node54.html#appendix.data">C Example Data</A></LI></UL><UL class="toc"><LI><A href="answers.html#label182">Answers to the Exercises</A></LI></UL><UL class="toc"><LI><A href="bib.html#label192">Bibliography</A></LI></UL><UL class="toc"><LI><A href="idx.html#label193">Index</A></LI></UL><HR><ADDRESS><A href="http://www.ps.uni-sb.de/~schulte/">Christian Schulte</A> and <A href="http://www.ps.uni-sb.de/~smolka/">Gert Smolka</A><BR><SPAN class="version">Version 1.4.0 (20110908185330)</SPAN></ADDRESS></BODY></HTML>
|