/usr/share/octave/packages/communications-1.2.1/decode.m is in octave-communications-common 1.2.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 | ## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{msg} =} decode (@var{code}, @var{n}, @var{k})
## @deftypefnx {Function File} {@var{msg} =} decode (@var{code}, @var{n}, @var{k}, @var{typ})
## @deftypefnx {Function File} {@var{msg} =} decode (@var{code}, @var{n}, @var{k}, @var{typ}, @var{opt1})
## @deftypefnx {Function File} {@var{msg} =} decode (@var{code}, @var{n}, @var{k}, @var{typ}, @var{opt1}, @var{opt2})
## @deftypefnx {Function File} {[@var{msg}, @var{err}] =} decode (@dots{})
## @deftypefnx {Function File} {[@var{msg}, @var{err}, @var{ccode}] =} decode (@dots{})
## @deftypefnx {Function File} {[@var{msg}, @var{err}, @var{ccode}, @var{cerr}] =} decode (@dots{})
##
## Top level block decoder. This function makes use of the lower level
## functions such as @code{cyclpoly}, @code{cyclgen}, @code{hammgen}, and
## @code{bchenco}. The coded message to decode is pass in @var{code}, the
## codeword length is @var{n} and the message length is @var{k}. This
## function is used to decode messages using either:
##
## @table @asis
## @item A [n,k] linear block code defined by a generator matrix
## @item A [n,k] cyclic code defined by a generator polynomial
## @item A [n,k] Hamming code defined by a primitive polynomial
## @item A [n,k] BCH code code defined by a generator polynomial
## @end table
##
## The type of coding to use is defined by the variable @var{typ}. This
## variable is a string taking one of the values
##
## @table @code
## @item "linear"
## @itemx "linear/binary"
## A linear block code is assumed with the message @var{msg} being in a
## binary format. In this case the argument @var{opt1} is the generator
## matrix, and is required. Additionally, @var{opt2} containing the
## syndrome lookup table (see @code{syndtable}) can also be passed.
## @item "cyclic"
## @itemx "cyclic/binary"
## A cyclic code is assumed with the message @var{msg} being in a binary
## format. The generator polynomial to use can be defined in @var{opt1}.
## The default generator polynomial to use will be
## @code{cyclpoly (@var{n}, @var{k})}. Additionally, @var{opt2} containing the
## syndrome lookup table (see @code{syndtable}) can also be passed.
## @item "hamming"
## @itemx "hamming/binary"
## A Hamming code is assumed with the message @var{msg} being in a binary
## format. In this case @var{n} must be of an integer of the form
## @code{2^@var{m}-1}, where @var{m} is an integer. In addition @var{k}
## must be @code{@var{n}-@var{m}}. The primitive polynomial to use can
## be defined in @var{opt1}. The default primitive polynomial to use is
## the same as defined by @code{hammgen}. The variable @var{opt2} should
## not be defined.
## @item "bch"
## @itemx "bch/binary"
## A BCH code is assumed with the message @var{msg} being in a binary
## format. The primitive polynomial to use can be defined in @var{opt2}.
## The error correction capability of the code can also be defined in
## @var{opt1}. Use the empty matrix [] to let the error correction
## capability take the default value.
## @end table
##
## In addition the argument "binary" above can be replaced with "decimal",
## in which case the message is assumed to be a decimal vector, with each
## value representing a symbol to be coded. The binary format can be in two
## forms
##
## @table @code
## @item An @var{x}-by-@var{n} matrix
## Each row of this matrix represents a symbol to be decoded
## @item A vector with length divisible by @var{n}
## The coded symbols are created from groups of @var{n} elements of this vector
## @end table
##
## The decoded message is return in @var{msg}. The number of errors encountered
## is returned in @var{err}. If the coded message format is "decimal" or a
## "binary" matrix, then @var{err} is a column vector having a length equal
## to the number of decoded symbols. If @var{code} is a "binary" vector, then
## @var{err} is the same length as @var{msg} and indicated the number of
## errors in each symbol. If the value @var{err} is positive it indicates the
## number of errors corrected in the corresponding symbol. A negative value
## indicates an uncorrectable error. The corrected code is returned in
## @var{ccode} in a similar format to the coded message @var{msg}. The
## variable @var{cerr} contains similar data to @var{err} for @var{ccode}.
##
## It should be noted that all internal calculations are performed in the
## binary format. Therefore for large values of @var{n}, it is preferable
## to use the binary format to pass the messages to avoid possible rounding
## errors. Additionally, if repeated calls to @code{decode} will be performed,
## it is often faster to create a generator matrix externally with the
## functions @code{hammgen} or @code{cyclgen}, rather than let @code{decode}
## recalculate this matrix at each iteration. In this case @var{typ} should
## be "linear". The exception to this case is BCH codes, where the required
## syndrome table is too large. The BCH decoder, decodes directly from the
## polynomial never explicitly forming the syndrome table.
##
## @seealso{encode, cyclgen, cyclpoly, hammgen, bchdeco, bchpoly, syndtable}
## @end deftypefn
function [msg, err, ccode, cerr] = decode (code, n, k, typ, opt1, opt2)
if (nargin < 3 || nargin > 6)
print_usage ();
endif
if (! (isscalar (n) && n == fix (n) && n >= 3))
error ("decode: N must be an integer greater than 3");
endif
if (! (isscalar (k) && k == fix (k) && k <= n))
error ("decode: K must be an integer less than N");
endif
if (nargin > 3)
if (!ischar (typ))
error ("decode: TYP must be a string");
else
## Why the hell did matlab decide on such an ugly way of passing 2 args!
if (strcmp (typ, "linear") || strcmp (typ, "linear/binary"))
coding = "linear";
msgtyp = "binary";
elseif (strcmp (typ, "linear/decimal"))
coding = "linear";
msgtyp = "decimal";
elseif (strcmp (typ, "cyclic") || strcmp (typ, "cyclic/binary"))
coding = "cyclic";
msgtyp = "binary";
elseif (strcmp (typ, "cyclic/decimal"))
coding = "cyclic";
msgtyp = "decimal";
elseif (strcmp (typ, "bch") || strcmp (typ, "bch/binary"))
coding = "bch";
msgtyp = "binary";
elseif (strcmp (typ, "bch/decimal"))
coding = "bch";
msgtyp = "decimal";
elseif (strcmp (typ, "hamming") || strcmp (typ, "hamming/binary"))
coding = "hamming";
msgtyp = "binary";
elseif (strcmp (typ, "hamming/decimal"))
coding = "hamming";
msgtyp = "decimal";
else
error ("decode: invalid coding and/or message TYP '%s'", typ);
endif
endif
else
coding = "hamming";
msgtyp = "binary";
endif
if (strcmp (msgtyp, "binary"))
vecttyp = 0;
if ((max (code(:)) > 1) || (min (code(:)) < 0))
error ("decode: CODE must be a binary matrix");
endif
[ncodewords, n2] = size (code);
len = n2*ncodewords;
if (len/n != fix (len/n))
error ("decode: size of CODE must be a multiple of N");
endif
if (min (n2, ncodewords) == 1)
vecttyp = 1;
ncodewords = len / n;
code = reshape (code, n, ncodewords);
code = code';
elseif (n2 != n)
error ("decode: CODE must be a matrix with N columns");
endif
else
if (!isvector (code))
error ("decode: decimal CODE type must be a vector");
endif
if (max (code) > 2^n-1 || min (code) < 0)
error ("decode: all elements of CODE must be in the range [0,2^N-1]");
endif
ncodewords = length (code);
code = de2bi (code(:), n);
endif
if (strcmp (coding, "bch"))
if (nargin < 5 || isempty (opt1))
tmp = bchpoly (n, k, "probe");
t = tmp(3);
else
t = opt1;
endif
if (nargin > 5)
[msg err ccode] = bchdeco (code, k, t, opt2);
else
[msg err ccode] = bchdeco (code, k, t);
endif
cerr = err;
else
if (strcmp (coding, "linear"))
if (nargin > 4)
gen = opt1;
if ((size (gen, 1) != k) || (size (gen, 2) != n))
error ("decode: generator matrix must be of size KxN");
endif
par = gen2par (gen);
if (nargin > 5)
st = opt2;
else
st = syndtable (par);
endif
else
error ("decode: linear coding requires a generator matrix");
endif
elseif (strcmp (coding, "cyclic"))
if (nargin > 4)
[par, gen] = cyclgen (n, opt1);
else
[par, gen] = cyclgen (n, cyclpoly (n, k));
endif
if (nargin > 5)
## FIXME: Should we check that the generator polynomial is
## consistent with the syndrome table. Where is the acceleration in
## this case???
st = opt2;
else
st = syndtable (par);
endif
else
m = log2 (n + 1);
if (! (m == fix (m) && m >= 3 && m <= 16))
error ("decode: N must be equal to 2^M-1 for integer M in the range [3,16]");
endif
if (k != (n-m))
error ("decode: K must be equal to N-M for Hamming decoder");
endif
if (nargin > 4)
[par, gen] = hammgen (m, opt1);
else
[par, gen] = hammgen (m);
endif
if (nargin > 5)
error ("decode: too many arguments for Hamming decoder");
else
st = syndtable (par);
endif
endif
errvec = st(bi2de ((mod (par * code', 2))', "left-msb") + 1,:);
ccode = mod (code+errvec, 2);
err = sum (errvec');
cerr = err;
if (isequal (gen(:,1:k), eye (k)))
msg = ccode(:,1:k);
elseif (isequal (gen(:,n-k+1:n), eye (k)))
msg = ccode(:,n-k+1:n);
else
error ("decode: generator matrix must be in standard form");
endif
endif
if (strcmp (msgtyp, "binary") && vecttyp == 1)
msg = msg';
msg = msg(:);
ccode = ccode';
ccode = ccode(:);
err = ones (k, 1) * err;
err = err(:);
cerr = ones (n, 1) * cerr;
cerr = cerr(:);
else
err = err(:);
cerr = cerr(:);
if (strcmp (msgtyp, "decimal"))
msg = bi2de (msg);
ccode = bi2de (ccode);
endif
endif
endfunction
%% Test input validation
%!error decode ()
%!error decode (1)
%!error decode (1, 2)
%!error decode (1, 2, 3, 4, 5, 6, 7)
%!error decode (1, 2, 3)
%!error decode (1, 5, 6)
%!error decode (1, 5, 3, "invalid")
|