This file is indexed.

/usr/share/octave/packages/communications-1.2.1/doc-cache is in octave-communications-common 1.2.1-1build1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943
1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997
1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051
2052
2053
2054
2055
2056
2057
2058
2059
2060
2061
2062
2063
2064
2065
2066
2067
2068
2069
2070
2071
2072
2073
2074
2075
2076
2077
2078
2079
2080
2081
2082
2083
2084
2085
2086
2087
2088
2089
2090
2091
2092
2093
2094
2095
2096
2097
2098
2099
2100
2101
2102
2103
2104
2105
2106
2107
2108
2109
2110
2111
2112
2113
2114
2115
2116
2117
2118
2119
2120
2121
2122
2123
2124
2125
2126
2127
2128
2129
2130
2131
2132
2133
2134
2135
2136
2137
2138
2139
2140
2141
2142
2143
2144
2145
2146
2147
2148
2149
2150
2151
2152
2153
2154
2155
2156
2157
2158
2159
2160
2161
2162
2163
2164
2165
2166
2167
2168
2169
2170
2171
2172
2173
2174
2175
2176
2177
2178
2179
2180
2181
2182
2183
2184
2185
2186
2187
2188
2189
2190
2191
2192
2193
2194
2195
2196
2197
2198
2199
2200
2201
2202
2203
2204
2205
2206
2207
2208
2209
2210
2211
2212
2213
2214
2215
2216
2217
2218
2219
2220
2221
2222
2223
2224
2225
2226
2227
2228
2229
2230
2231
2232
2233
2234
2235
2236
2237
2238
2239
2240
2241
2242
2243
2244
2245
2246
2247
2248
2249
2250
2251
2252
2253
2254
2255
2256
2257
2258
2259
2260
2261
2262
2263
2264
2265
2266
2267
2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321
2322
2323
2324
2325
2326
2327
2328
2329
2330
2331
2332
2333
2334
2335
2336
2337
2338
2339
2340
2341
2342
2343
2344
2345
2346
2347
2348
2349
2350
2351
2352
2353
2354
2355
2356
2357
2358
2359
2360
2361
2362
2363
2364
2365
2366
2367
2368
2369
2370
2371
2372
2373
2374
2375
2376
2377
2378
2379
2380
2381
2382
2383
2384
2385
2386
2387
2388
2389
2390
2391
2392
2393
2394
2395
2396
2397
2398
2399
2400
2401
2402
2403
2404
2405
2406
2407
2408
2409
2410
2411
2412
2413
2414
2415
2416
2417
2418
2419
2420
2421
2422
2423
2424
2425
2426
2427
2428
2429
2430
2431
2432
2433
2434
2435
2436
2437
2438
2439
2440
2441
2442
2443
2444
2445
2446
2447
2448
2449
2450
2451
2452
2453
2454
2455
2456
2457
2458
2459
2460
2461
2462
2463
2464
2465
2466
2467
2468
2469
2470
2471
2472
2473
2474
2475
2476
2477
2478
2479
2480
2481
2482
2483
2484
2485
2486
2487
2488
2489
2490
2491
2492
2493
2494
2495
2496
2497
2498
2499
2500
2501
2502
2503
2504
2505
2506
2507
2508
2509
2510
2511
2512
2513
2514
2515
2516
2517
2518
2519
2520
2521
2522
2523
2524
2525
2526
2527
2528
2529
2530
2531
2532
2533
2534
2535
2536
2537
2538
2539
2540
2541
2542
2543
2544
2545
2546
2547
2548
2549
2550
2551
2552
2553
2554
2555
2556
2557
2558
2559
2560
2561
2562
2563
2564
2565
2566
2567
2568
2569
2570
2571
2572
2573
2574
2575
2576
2577
2578
2579
2580
2581
2582
2583
2584
2585
2586
2587
2588
2589
2590
2591
2592
2593
2594
2595
2596
2597
2598
2599
2600
2601
2602
2603
2604
2605
2606
2607
2608
2609
2610
2611
2612
2613
2614
2615
2616
2617
2618
2619
2620
2621
2622
2623
2624
2625
2626
2627
2628
2629
2630
2631
2632
2633
2634
2635
2636
2637
2638
2639
2640
2641
2642
2643
2644
2645
2646
2647
2648
2649
2650
2651
2652
2653
2654
2655
2656
2657
2658
2659
2660
2661
2662
2663
2664
2665
2666
2667
2668
2669
2670
2671
2672
2673
2674
2675
2676
2677
2678
2679
2680
2681
2682
2683
2684
2685
2686
2687
2688
2689
2690
2691
2692
2693
2694
2695
2696
2697
2698
2699
2700
2701
2702
2703
2704
2705
2706
2707
2708
2709
2710
2711
2712
2713
2714
2715
2716
2717
2718
2719
2720
2721
2722
2723
2724
2725
2726
2727
2728
2729
2730
2731
2732
2733
2734
2735
2736
2737
2738
2739
2740
2741
2742
2743
2744
2745
2746
2747
2748
2749
2750
2751
2752
2753
2754
2755
2756
2757
2758
2759
2760
2761
2762
2763
2764
2765
2766
2767
2768
2769
2770
2771
2772
2773
2774
2775
2776
2777
2778
2779
2780
2781
2782
2783
2784
2785
2786
2787
2788
2789
2790
2791
2792
2793
2794
2795
2796
2797
2798
2799
2800
2801
2802
2803
2804
2805
2806
2807
2808
2809
2810
2811
2812
2813
2814
2815
2816
2817
2818
2819
2820
2821
2822
2823
2824
2825
2826
2827
2828
2829
2830
2831
2832
2833
2834
2835
2836
2837
2838
2839
2840
2841
2842
2843
2844
2845
2846
2847
2848
2849
2850
2851
2852
2853
2854
2855
2856
2857
2858
2859
2860
2861
2862
2863
2864
2865
2866
2867
2868
2869
2870
2871
2872
2873
2874
2875
2876
2877
2878
2879
2880
2881
2882
2883
2884
2885
2886
2887
2888
2889
2890
2891
2892
2893
2894
2895
2896
2897
2898
2899
2900
2901
2902
2903
2904
2905
2906
2907
2908
2909
2910
2911
2912
2913
2914
2915
2916
2917
2918
2919
2920
2921
2922
2923
2924
2925
2926
2927
2928
2929
2930
2931
2932
2933
2934
2935
2936
2937
2938
2939
2940
2941
2942
2943
2944
2945
2946
2947
2948
2949
2950
2951
2952
2953
2954
2955
2956
2957
2958
2959
2960
2961
2962
2963
2964
2965
2966
2967
2968
2969
2970
2971
2972
2973
2974
2975
2976
2977
2978
2979
2980
2981
2982
2983
2984
2985
2986
2987
2988
2989
2990
2991
2992
2993
2994
2995
2996
2997
2998
2999
3000
3001
3002
3003
3004
3005
3006
3007
3008
3009
3010
3011
3012
3013
3014
3015
3016
3017
3018
3019
3020
3021
3022
3023
3024
3025
3026
3027
3028
3029
3030
3031
3032
3033
3034
3035
3036
3037
3038
3039
3040
3041
3042
3043
3044
3045
3046
3047
3048
3049
3050
3051
3052
3053
3054
3055
3056
3057
3058
3059
3060
3061
3062
3063
3064
3065
3066
3067
3068
3069
3070
3071
3072
3073
3074
3075
3076
3077
3078
3079
3080
3081
3082
3083
3084
3085
3086
3087
3088
3089
3090
3091
3092
3093
3094
3095
3096
3097
3098
3099
3100
3101
3102
3103
3104
3105
3106
3107
3108
3109
3110
3111
3112
3113
3114
3115
3116
3117
3118
3119
3120
3121
3122
3123
3124
3125
3126
3127
3128
3129
3130
3131
3132
3133
3134
3135
3136
3137
3138
3139
3140
3141
3142
3143
3144
3145
3146
3147
3148
3149
3150
3151
3152
3153
3154
3155
3156
3157
3158
3159
3160
3161
3162
3163
3164
3165
3166
3167
3168
3169
3170
3171
3172
3173
3174
3175
3176
3177
3178
3179
3180
3181
3182
3183
3184
3185
3186
3187
3188
3189
3190
3191
3192
3193
3194
3195
3196
3197
3198
3199
3200
3201
3202
3203
3204
3205
3206
3207
3208
3209
3210
3211
3212
3213
3214
3215
3216
3217
3218
3219
3220
3221
3222
3223
3224
3225
3226
3227
3228
3229
3230
3231
3232
3233
3234
3235
3236
3237
3238
3239
3240
3241
3242
3243
3244
3245
3246
3247
3248
3249
3250
3251
3252
3253
3254
3255
3256
3257
3258
3259
3260
3261
3262
3263
3264
3265
3266
3267
3268
3269
3270
3271
3272
3273
3274
3275
3276
3277
3278
3279
3280
3281
3282
3283
3284
3285
3286
3287
3288
3289
3290
3291
3292
3293
3294
3295
3296
3297
3298
3299
3300
3301
3302
3303
3304
3305
3306
3307
3308
3309
3310
3311
3312
3313
3314
3315
3316
3317
3318
3319
3320
3321
3322
3323
3324
3325
3326
3327
3328
3329
3330
3331
3332
3333
3334
3335
3336
3337
3338
3339
3340
3341
3342
3343
3344
3345
3346
3347
3348
3349
3350
3351
3352
3353
3354
3355
3356
3357
3358
3359
3360
3361
3362
3363
3364
3365
3366
3367
3368
3369
3370
3371
3372
3373
3374
3375
3376
3377
3378
3379
3380
3381
3382
3383
3384
3385
3386
3387
3388
3389
3390
3391
3392
3393
3394
3395
3396
3397
3398
3399
3400
3401
3402
3403
3404
3405
3406
3407
3408
3409
3410
3411
3412
3413
3414
3415
3416
3417
3418
3419
3420
3421
3422
3423
3424
3425
3426
3427
3428
3429
3430
3431
3432
3433
3434
3435
3436
3437
3438
3439
3440
3441
3442
3443
3444
3445
3446
3447
3448
3449
3450
3451
3452
3453
3454
3455
3456
3457
3458
3459
3460
3461
3462
3463
3464
3465
3466
3467
3468
3469
3470
3471
3472
3473
3474
3475
3476
3477
3478
3479
3480
3481
3482
3483
3484
3485
3486
3487
3488
3489
3490
3491
3492
3493
3494
3495
3496
3497
3498
3499
3500
3501
3502
3503
3504
3505
3506
3507
3508
3509
3510
3511
3512
3513
3514
3515
3516
3517
3518
3519
3520
3521
3522
3523
3524
3525
3526
3527
3528
3529
3530
3531
3532
3533
3534
3535
3536
3537
3538
3539
3540
3541
3542
3543
3544
3545
3546
3547
3548
3549
3550
3551
3552
3553
3554
3555
3556
3557
3558
3559
3560
3561
3562
3563
3564
3565
3566
3567
3568
3569
3570
3571
3572
3573
3574
3575
3576
3577
3578
3579
3580
3581
3582
3583
3584
3585
3586
3587
3588
3589
3590
3591
3592
3593
3594
3595
3596
3597
3598
3599
3600
3601
3602
3603
3604
3605
3606
3607
3608
3609
3610
3611
3612
3613
3614
3615
3616
3617
3618
3619
3620
3621
3622
3623
3624
3625
3626
3627
3628
3629
3630
3631
3632
3633
3634
3635
3636
3637
3638
3639
3640
3641
3642
3643
3644
3645
3646
3647
3648
3649
3650
3651
3652
3653
3654
3655
3656
3657
3658
3659
3660
3661
3662
3663
3664
3665
3666
3667
3668
3669
3670
3671
3672
3673
3674
3675
3676
3677
3678
3679
3680
3681
3682
3683
3684
3685
3686
3687
3688
3689
3690
3691
3692
3693
3694
3695
3696
3697
3698
3699
3700
3701
3702
3703
3704
3705
3706
3707
3708
3709
3710
3711
3712
3713
3714
3715
3716
3717
3718
3719
3720
3721
3722
3723
3724
3725
3726
3727
3728
3729
3730
3731
3732
3733
3734
3735
3736
3737
3738
3739
3740
3741
3742
3743
3744
3745
3746
3747
3748
3749
3750
3751
3752
3753
3754
3755
3756
3757
3758
3759
3760
3761
3762
3763
3764
3765
3766
3767
3768
3769
3770
3771
3772
3773
3774
3775
3776
3777
3778
3779
3780
3781
3782
3783
3784
3785
3786
3787
3788
3789
3790
3791
3792
3793
3794
3795
3796
3797
3798
3799
3800
3801
3802
3803
3804
3805
3806
3807
3808
3809
3810
3811
3812
3813
3814
3815
3816
3817
3818
3819
3820
3821
3822
3823
3824
3825
3826
3827
3828
3829
3830
3831
3832
3833
3834
3835
3836
3837
3838
3839
3840
3841
3842
3843
3844
3845
3846
3847
3848
3849
3850
3851
3852
3853
3854
3855
3856
3857
3858
3859
3860
3861
3862
3863
3864
3865
3866
3867
3868
3869
3870
3871
3872
3873
3874
3875
3876
3877
3878
3879
3880
3881
3882
3883
3884
3885
3886
3887
3888
3889
3890
3891
3892
3893
3894
3895
3896
3897
3898
3899
3900
3901
3902
3903
3904
3905
3906
3907
3908
3909
3910
3911
3912
3913
3914
3915
3916
3917
3918
3919
3920
3921
3922
3923
3924
3925
3926
3927
3928
3929
3930
3931
3932
3933
3934
3935
# doc-cache created by Octave 4.0.0
# name: cache
# type: cell
# rows: 3
# columns: 92
# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ademodce


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2069
 -- Function File: Y = ademodce (X, FS, "amdsb-tc", offset)
 -- Function File: Y = ademodce (X, FS, "amdsb-tc/costas", offset)
 -- Function File: Y = ademodce (X, FS, "amdsb-sc")
 -- Function File: Y = ademodce (X, FS, "amdsb-sc/costas")
 -- Function File: Y = ademodce (X, FS, "amssb")
 -- Function File: Y = ademodce (X, FS, "qam")
 -- Function File: Y = ademodce (X, FS, "qam/cmplx")
 -- Function File: Y = ademodce (X, FS, "fm", DEV)
 -- Function File: Y = ademodce (X, FS, "pm", DEV)
 -- Function File: Y = ademodce (X, [FS, IPHS], ...)
 -- Function File: Y = ademodce (..., NUM, DEN)

     Baseband demodulator for analog signals.  The input signal is
     specified by X, its sampling frequency by FS and the type of
     modulation by the third argument, TYP.  The default values of FS is
     1 and TYP is "amdsb-tc".

     If the argument FS is a two element vector, the first element
     represents the sampling rate and the second the initial phase.

     The different types of demodulations that are available are

     "am"
     "amdsb-tc"
          Double-sideband with carrier
     "amdsb-tc/costas"
          Double-sideband with carrier and Costas phase locked loop
     "amdsb-sc"
          Double-sideband with suppressed carrier
     "amssb"
          Single-sideband with frequency domain Hilbert filtering
     "qam"
          Quadrature amplitude demodulation.  In-phase in odd-columns
          and quadrature in even-columns
     "qam/cmplx"
          Quadrature amplitude demodulation with complex return value.
     "fm"
          Frequency demodulation
     "pm"
          Phase demodulation

     Additional arguments are available for the demodulations
     "amdsb-tc", "fm", "pm".  These arguments are

     'offset'
          The offset in the input signal for the transmitted carrier.
     'dev'
          The deviation of the phase and frequency modulation

     It is possible to specify a low-pass filter, by the numerator NUM
     and denominator DEN that will be applied to the returned vector.

     See also: ademodce, dmodce.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 40
Baseband demodulator for analog signals.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
amdemod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 187
 -- Function File: M = amdemod (S, FC, FS)
     Compute the amplitude demodulation of the signal S with a carrier
     frequency of FC and a sample frequency of FS.

     See also: ammod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compute the amplitude demodulation of the signal S with a carrier
frequency of F



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
ammod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
 -- Function File: ammod (X, FC, FS)
     Create the AM modulation of the signal x with carrier frequency fs.
     Where x is sample at frequency fs.

     See also: amdemod, fmmod, fmdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Create the AM modulation of the signal x with carrier frequency fs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
amodce


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1813
 -- Function File: Y = amodce (X, FS, "amdsb-tc", offset)
 -- Function File: Y = amodce (X, FS, "amdsb-sc")
 -- Function File: Y = amodce (X, FS, "amssb")
 -- Function File: Y = amodce (X, FS, "amssb/time", NUM, DEN)
 -- Function File: Y = amodce (X, FS, "qam")
 -- Function File: Y = amodce (X, FS, "fm", DEV)
 -- Function File: Y = amodce (X, FS, "pm", DEV)
 -- Function File: Y = amodce (X, [FS, IPHS], ...)

     Baseband modulator for analog signals.  The input signal is
     specified by X, its sampling frequency by FS and the type of
     modulation by the third argument, TYP.  The default values of FS is
     1 and TYP is "amdsb-tc".

     If the argument FS is a two element vector, the first element
     represents the sampling rate and the second the initial phase.

     The different types of modulations that are available are

     "am"
     "amdsb-tc"
          Double-sideband with carrier
     "amdsb-sc"
          Double-sideband with suppressed carrier
     "amssb"
          Single-sideband with frequency domain Hilbert filtering
     "amssb/time"
          Single-sideband with time domain filtering.  Hilbert filter is
          used by default, but the filter can be specified
     "qam"
          Quadrature amplitude modulation
     "fm"
          Frequency modulation
     "pm"
          Phase modulation

     Additional arguments are available for the modulations "amdsb-tc",
     "fm", "pm" and "amssb/time".  These arguments are

     'offset'
          The offset in the input signal for the transmitted carrier.
     'dev'
          The deviation of the phase and frequency modulation
     'num'
     'den'
          The numerator and denominator of the filter transfer function
          for the time domain filtering of the SSB modulation

     See also: ademodce, dmodce.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 38
Baseband modulator for analog signals.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
apkconst


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1626
 -- Function File: apkconst (NSIG)
 -- Function File: apkconst (NSIG, AMP)
 -- Function File: apkconst (NSIG, AMP, PHS)
 -- Function File: apkconst (..., "n")
 -- Function File: apkconst (..., STR)
 -- Function File: Y = apkconst (...)

     Plots a ASK/PSK signal constellation.  Argument NSIG is a real
     vector whose length determines the number of ASK radii in the
     constellation.  The values of vector NSIG determine the number of
     points in each ASK radii.

     By default the radii of each ASK modulated level is given by the
     index of NSIG.  The amplitudes can be defined explicitly in the
     variable AMP, which is a vector of the same length as NSIG.

     By default the first point in each ASK radii has zero phase, and
     following points are coding in an anti-clockwise manner.  If PHS is
     defined then it is a vector of the same length as NSIG defining the
     initial phase in each ASK radii.

     In addition 'apkconst' takes two string arguments "n" and STR.  If
     the string "n" is included in the arguments, then a number is
     printed next to each constellation point giving the symbol value
     that would be mapped to this point by the 'modmap' function.  The
     argument STR is a plot style string (example "r+") and determines
     the default gnuplot point style to use for plot points in the
     constellation.

     If 'apkconst' is called with a return argument, then no plot is
     created.  However the return value is a vector giving the in-phase
     and quadrature values of the symbols in the constellation.

     See also: dmod, ddemod, modmap, demodmap.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Plots a ASK/PSK signal constellation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4
awgn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1129
 -- Function File: Y = awgn (X, SNR)
 -- Function File: Y = awgn (X, SNR, PWR)
 -- Function File: Y = awgn (X, SNR, PWR, SEED)
 -- Function File: Y = awgn (..., TYPE)

     Add white Gaussian noise to a voltage signal.

     The input X is assumed to be a real or complex voltage signal.  The
     returned value Y will be the same form and size as X but with
     Gaussian noise added.  Unless the power is specified in PWR, the
     signal power is assumed to be 0dBW, and the noise of SNR dB will be
     added with respect to this.  If PWR is a numeric value then the
     signal X is assumed to be PWR dBW, otherwise if PWR is "measured",
     then the power in the signal will be measured and the noise added
     relative to this measured power.

     If SEED is specified, then the random number generator seed is
     initialized with this value

     By default the SNR and PWR are assumed to be in dB and dBW
     respectively.  This default behavior can be chosen with TYPE set to
     "dB". In the case where TYPE is set to "linear", PWR is assumed to
     be in Watts and SNR is a ratio.

     See also: randn, wgn.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Add white Gaussian noise to a voltage signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
bchpoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3108
 -- Function File: P = bchpoly ()
 -- Function File: P = bchpoly (N)
 -- Function File: P = bchpoly (N, K)
 -- Function File: P = bchpoly (PRIM, K)
 -- Function File: P = bchpoly (N, K, PRIM)
 -- Function File: P = bchpoly (..., PROBE)
 -- Function File: [P, F] = bchpoly (...)
 -- Function File: [P, F, C] = bchpoly (...)
 -- Function File: [P, F, C, PAR] = bchpoly (...)
 -- Function File: [P, F, C, PAR, T] = bchpoly (...)

     Calculates the generator polynomials for a BCH coder.  Called with
     no input arguments 'bchpoly' returns a list of all of the valid BCH
     codes for the codeword length 7, 15, 31, 63, 127, 255 and 511.  A
     three column matrix is returned with each row representing a
     separate valid BCH code.  The first column is the codeword length,
     the second the message length and the third the error correction
     capability of the code.

     Called with a single input argument, 'bchpoly' returns the valid
     BCH codes for the specified codeword length N.  The output format
     is the same as above.

     When called with two or more arguments, 'bchpoly' calculates the
     generator polynomial of a particular BCH code.  The generator
     polynomial is returned in P as a vector representation of a
     polynomial in GF(2).  The terms of the polynomial are listed
     least-significant term first.

     The desired BCH code can be specified by its codeword length N and
     its message length K.  Alternatively, the primitive polynomial over
     which to calculate the polynomial can be specified as PRIM.  If a
     vector representation of the primitive polynomial is given, then
     PRIM can be specified as the first argument of two arguments, or as
     the third argument.  However, if an integer representation of the
     primitive polynomial is used, then the primitive polynomial must be
     specified as the third argument.

     When called with two or more arguments, 'bchpoly' can also return
     the factors F of the generator polynomial P, the cyclotomic coset
     for the Galois field over which the BCH code is calculated, the
     parity check matrix PAR and the error correction capability T.  It
     should be noted that the parity check matrix is calculated with
     'cyclgen' and limitations in this function means that the parity
     check matrix is only available for codeword length up to 63.  For
     codeword length longer than this PAR returns an empty matrix.

     With a string argument PROBE defined, the action of 'bchpoly' is to
     calculate the error correcting capability of the BCH code defined
     by N, K and PRIM and return it in P.  This is similar to a call to
     'bchpoly' with zero or one argument, except that only a single code
     is checked.  Any string value for PROBE will force this action.

     In general the codeword length N can be expressed as '2^M-1', where
     M is an integer.  However, if [N,K] is a valid BCH code, then a
     shortened BCH code of the form [N-X,K-X] can be created with the
     same generator polynomial

     See also: cyclpoly, encode, decode, cosets.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Calculates the generator polynomials for a BCH coder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
bi2de


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 697
 -- Function File: D = bi2de (B)
 -- Function File: D = bi2de (B, F)
 -- Function File: D = bi2de (B, P)
 -- Function File: D = bi2de (B, P, F)

     Convert bit matrix to a vector of integers

     Each row of the matrix B is treated as a single integer represented
     in binary form.  The elements of B, must therefore be '0' or '1'

     If P is defined then it is treated as the base of the decomposition
     and the elements of B must then lie between '0' and 'p-1'.

     The variable F defines whether the first or last element of B is
     considered to be the most-significant.  Valid values of F are
     "right-msb" or "left-msb".  By default F is "right-msb".

     See also: de2bi.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Convert bit matrix to a vector of integers



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
biterr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1881
 -- Function File: [NUM, RATE] = biterr (A, B)
 -- Function File: [NUM, RATE] = biterr (..., K)
 -- Function File: [NUM, RATE] = biterr (..., FLAG)
 -- Function File: [NUM, RATE IND] = biterr (...)

     Compares two matrices and returns the number of bit errors and the
     bit error rate.  The binary representations of the variables A and
     B are treated and A and B can be either:

     Both matrices
          In this case both matrices must be the same size and then by
          default the return values NUM and RATE are the overall number
          of bit errors and the overall bit error rate.
     One column vector
          In this case the column vector is used for bit error
          comparison column-wise with the matrix.  The returned values
          NUM and RATE are then row vectors containing the number of bit
          errors and the bit error rate for each of the column-wise
          comparisons.  The number of rows in the matrix must be the
          same as the length of the column vector
     One row vector
          In this case the row vector is used for bit error comparison
          row-wise with the matrix.  The returned values NUM and RATE
          are then column vectors containing the number of bit errors
          and the bit error rate for each of the row-wise comparisons.
          The number of columns in the matrix must be the same as the
          length of the row vector

     This behavior can be overridden with the variable FLAG.  FLAG can
     take the value "column-wise", "row-wise" or "overall".  A
     column-wise comparison is not possible with a row vector and
     visa-versa.

     By default the number of bits in each symbol is assumed to be give
     by the number required to represent the maximum value of A and B.
     The number of bits to represent a symbol can be overridden by the
     variable K.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compares two matrices and returns the number of bit errors and the bit
error rat



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
bsc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
 -- Function File: Y = bsc (DATA, P)
     Send DATA into a binary symmetric channel with probability P of
     error one each symbol.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Send DATA into a binary symmetric channel with probability P of error
one each s



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
comms


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1431
 -- Function File: comms ("help")
 -- Function File: comms ("info")
 -- Function File: comms ("info", MOD)
 -- Function File: comms ("test")
 -- Function File: comms ("test", MOD)

     Manual and test code for the Octave Communications toolbox.  There
     are 5 possible ways to call this function.

     'comms ("help")'
          Display this help message.  Called with no arguments, this
          function also displays this help message
     'comms ("info")'
          Open the Communications toolbox manual
     'comms ("info", MOD)'
          Open the Communications toolbox manual at the section
          specified by MOD
     'comms ("test")'
          Run all of the test code for the Communications toolbox.
     'comms ("test", MOD)'
          Run only the test code for the Communications toolbox in the
          module MOD.

     Valid values for the variable MOD are

     "all"
          All of the toolbox
     "random"
          The random signal generation and analysis package
     "source"
          The source coding functions of the package
     "block"
          The block coding functions
     "convol"
          The convolution coding package
     "modulation"
          The modulation package
     "special"
          The special filter functions
     "galois"
          The Galois fields package

     Please note that this function file should be used as an example of
     the use of this toolbox.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Manual and test code for the Octave Communications toolbox.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
compand


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1153
 -- Function File: Y = compand (X, MU, V, "mu/compressor")
 -- Function File: Y = compand (X, MU, V, "mu/expander")
 -- Function File: Y = compand (X, MU, V, "A/compressor")
 -- Function File: Y = compand (X, MU, V, "A/expander")

     Compresses and expanding the dynamic range of a signal using a
     mu-law or or A-law algorithm.

     The mu-law compressor/expander for reducing the dynamic range, is
     used if the fourth argument of 'compand' starts with "mu/".
     Whereas the A-law compressor/expander is used if 'compand' starts
     with "A/".  The mu-law algorithm uses the formulation


                  V log (1 + \mu/V |x|)
              y = -------------------- sgn(x)
                      log (1 + \mu)


     while the A-law algorithm used the formulation


                  /    A / (1 + log A) x,               0 <= |x| <= V/A
                  |
              y = <    V ( 1 + log (A/V |x|) )
                  |    ----------------------- sgn(x),  V/A < |x| <= V
                  \        1 + log A

     Neither converts from or to audio file ulaw format.  Use mu2lin or
     lin2mu instead.

     See also: m2ulin, lin2mu.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compresses and expanding the dynamic range of a signal using a mu-law or
or A-la



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
convenc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 964
 -- Function File: Y = convenc (MSG, T)
 -- Function File: Y = convenc (MSG, T, PUNCT)
 -- Function File: Y = convenc (MSG, T, PUNCT, S0)
 -- Function File: [Y, STATE_END] = convenc (...)
     Encode the binary vector MSG with the convolutional encoder
     described by the trellis structure T.

     The rate k/n convolutional encoder encodes k bits at a time from
     the input vector and produces n bits at a time into the output
     vector.  The input MSG must have a length that is a multiple of k.

     If the initial state S0 is specified, it indicates the internal
     state of the encoder when the first k input bits are fed in.  The
     default value of S0 is 0.

     The optional output argument STATE_END indicates the internal state
     of the encoder after the last bits are encoded.  This allows the
     state of the encoder to be saved and applied to the next call to
     'convenc' to process data in blocks.

     See also: poly2trellis.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Encode the binary vector MSG with the convolutional encoder described by
the tre



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
cosets


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 207
 -- Function File: cosets (M, PRIM)

     Finds the elements of GF(2^M) with primitive polynomial PRIM, that
     share the same minimum polynomial.  Returns a cell array of the
     partitioning of GF(2^M).


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Finds the elements of GF(2^M) with primitive polynomial PRIM, that share
the sam



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
de2bi


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1089
 -- Function File: B = de2bi (D)
 -- Function File: B = de2bi (D, N)
 -- Function File: B = de2bi (D, N, P)
 -- Function File: B = de2bi (D, N, P, F)

     Convert a non-negative integer to bit vector.

     The variable D must be a vector of non-negative integers.  'de2bi'
     then returns a matrix where each row represents the binary
     representation of elements of D.  If N is defined then the returned
     matrix will have N columns.  This number of columns can be either
     larger than the minimum needed and zeros will be added to the msb
     of the binary representation or smaller than the minimum in which
     case the least-significant part of the element is returned.

     If P is defined then it is used as the base for the decomposition
     of the returned values.  That is the elements of the returned value
     are between '0' and 'p-1'.

     The variable F defines whether the first or last element of B is
     considered to be the most-significant.  Valid values of F are
     "right-msb" or "left-msb".  By default F is "right-msb".

     See also: bi2de.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 45
Convert a non-negative integer to bit vector.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
decode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 4617
 -- Function File: MSG = decode (CODE, N, K)
 -- Function File: MSG = decode (CODE, N, K, TYP)
 -- Function File: MSG = decode (CODE, N, K, TYP, OPT1)
 -- Function File: MSG = decode (CODE, N, K, TYP, OPT1, OPT2)
 -- Function File: [MSG, ERR] = decode (...)
 -- Function File: [MSG, ERR, CCODE] = decode (...)
 -- Function File: [MSG, ERR, CCODE, CERR] = decode (...)

     Top level block decoder.  This function makes use of the lower
     level functions such as 'cyclpoly', 'cyclgen', 'hammgen', and
     'bchenco'.  The coded message to decode is pass in CODE, the
     codeword length is N and the message length is K.  This function is
     used to decode messages using either:

     A [n,k] linear block code defined by a generator matrix
     A [n,k] cyclic code defined by a generator polynomial
     A [n,k] Hamming code defined by a primitive polynomial
     A [n,k] BCH code code defined by a generator polynomial

     The type of coding to use is defined by the variable TYP.  This
     variable is a string taking one of the values

     '"linear"'
     '"linear/binary"'
          A linear block code is assumed with the message MSG being in a
          binary format.  In this case the argument OPT1 is the
          generator matrix, and is required.  Additionally, OPT2
          containing the syndrome lookup table (see 'syndtable') can
          also be passed.
     '"cyclic"'
     '"cyclic/binary"'
          A cyclic code is assumed with the message MSG being in a
          binary format.  The generator polynomial to use can be defined
          in OPT1.  The default generator polynomial to use will be
          'cyclpoly (N, K)'.  Additionally, OPT2 containing the syndrome
          lookup table (see 'syndtable') can also be passed.
     '"hamming"'
     '"hamming/binary"'
          A Hamming code is assumed with the message MSG being in a
          binary format.  In this case N must be of an integer of the
          form '2^M-1', where M is an integer.  In addition K must be
          'N-M'.  The primitive polynomial to use can be defined in
          OPT1.  The default primitive polynomial to use is the same as
          defined by 'hammgen'.  The variable OPT2 should not be
          defined.
     '"bch"'
     '"bch/binary"'
          A BCH code is assumed with the message MSG being in a binary
          format.  The primitive polynomial to use can be defined in
          OPT2.  The error correction capability of the code can also be
          defined in OPT1.  Use the empty matrix [] to let the error
          correction capability take the default value.

     In addition the argument "binary" above can be replaced with
     "decimal", in which case the message is assumed to be a decimal
     vector, with each value representing a symbol to be coded.  The
     binary format can be in two forms

     'An X-by-N matrix'
          Each row of this matrix represents a symbol to be decoded
     'A vector with length divisible by N'
          The coded symbols are created from groups of N elements of
          this vector

     The decoded message is return in MSG.  The number of errors
     encountered is returned in ERR.  If the coded message format is
     "decimal" or a "binary" matrix, then ERR is a column vector having
     a length equal to the number of decoded symbols.  If CODE is a
     "binary" vector, then ERR is the same length as MSG and indicated
     the number of errors in each symbol.  If the value ERR is positive
     it indicates the number of errors corrected in the corresponding
     symbol.  A negative value indicates an uncorrectable error.  The
     corrected code is returned in CCODE in a similar format to the
     coded message MSG.  The variable CERR contains similar data to ERR
     for CCODE.

     It should be noted that all internal calculations are performed in
     the binary format.  Therefore for large values of N, it is
     preferable to use the binary format to pass the messages to avoid
     possible rounding errors.  Additionally, if repeated calls to
     'decode' will be performed, it is often faster to create a
     generator matrix externally with the functions 'hammgen' or
     'cyclgen', rather than let 'decode' recalculate this matrix at each
     iteration.  In this case TYP should be "linear".  The exception to
     this case is BCH codes, where the required syndrome table is too
     large.  The BCH decoder, decodes directly from the polynomial never
     explicitly forming the syndrome table.

     See also: encode, cyclgen, cyclpoly, hammgen, bchdeco, bchpoly,
     syndtable.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Top level block decoder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
deintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 133
 -- Function File: DEINTRLVD = deintrlv (DATA, ELEMENTS)
     Restore elements of DATA according to ELEMENTS.

     See also: intrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 47
Restore elements of DATA according to ELEMENTS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
demodmap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2379
 -- Function File: z = demodmap (Y, FD, FS, "ask", M)
 -- Function File: z = demodmap (Y, FD, FS, "fsk", M, TONE)
 -- Function File: z = demodmap (Y, FD, FS, "msk")
 -- Function File: z = demodmap (Y, FD, FS, "psk", M)
 -- Function File: z = demodmap (Y, FD, FS, "qask", M)
 -- Function File: z = demodmap (Y, FD, FS, "qask/cir", NSIG, AMP, PHS)
 -- Function File: z = demodmap (Y, FD, FS, "qask/arb", INPHASE, QUADR)
 -- Function File: z = demodmap (Y, FD, FS, "qask/arb", MAP)
 -- Function File: z = demodmap (Y, [FD, OFF], ...)

     Demapping of an analog signal to a digital signal.  The function
     'demodmap' must have at least three input arguments and one output
     argument.  Argument Y is a complex variable representing the analog
     signal to be demapped.  The variables FD and FS are the sampling
     rate of the of digital signal and the sampling rate of the analog
     signal respectively.  It is required that 'FS/FD' is an integer.

     The available mapping of the digital signal are

     "ask"
          Amplitude shift keying
     "fsk"
          Frequency shift keying
     "msk"
          Minimum shift keying
     "psk"
          Phase shift keying
     "qask"
     "qsk"
     "qam"
          Quadrature amplitude shift keying

     In addition the "qask", "qsk" and "qam" method can be modified with
     the flags "/cir" or "/arb".  That is "qask/cir" and "qask/arb", etc
     are valid methods and give circular- and arbitrary-qask mappings
     respectively.  Also the method "fsk" and "msk" can be modified with
     the flag "/max", in which case Y is assumed to be a matrix with M
     columns, representing the symbol correlations.

     The variable M is the order of the modulation to use.  By default
     this is 2, and in general should be specified.

     For "qask/cir", the additional arguments are the same as for
     'apkconst', and you are referred to 'apkconst' for the definitions
     of the additional variables.

     For "qask/arb", the additional arguments INPHASE and QUADR give the
     in-phase and quadrature components of the mapping, in a similar
     mapping to the outputs of 'qaskenco' with one argument.  Similar
     MAP represents the in-phase and quadrature components of the
     mapping as the real and imaginary parts of the variable MAP.

     See also: modmap, ddemodce, ademodce, apkconst, qaskenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Demapping of an analog signal to a digital signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dpcmdeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 394
 -- Function File: SIG = dpcmdeco (INDX, CODEBOOK, PREDICTOR)
     Decode using differential pulse code modulation (DPCM).

     'sig = dpcmdeco (indx, codebook, predictor)'
          Decode the signal coded by DPCM. Use the prediction model and
          the coded prediction error given by a codebook and the index
          of each sample in this codebook.

     See also: dpcmenco, dpcmopt.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Decode using differential pulse code modulation (DPCM).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
dpcmenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1082
 -- Function File: QIDX = dpcmenco (SIG, CODEBOOK, PARTITION, PREDICTOR)
 -- Function File: [QIDX, Q] = dpcmenco (SIG, CODEBOOK, PARTITION,
          PREDICTOR)
 -- Function File: [QIDX, Q, D] = dpcmenco (...)
     Encode using differential pulse code modulation (DPCM).

     'qidx = dpcmenco (sig, codebook, partition, predictor)'
          Determine position of the prediction error in a strictly
          monotonic table (partition).  The predictor vector describes a
          m-th order prediction for the output according to the
          following equation y(k) = p(1)sig(k-1) + p(2)sig(k-2) + ...  +
          p(m-1)sig(k-m+1) + p(m)sig(k-m) , where the predictor vector
          is given by predictor = [0, p(1), p(2), p(3),..., p(m-1),
          p(m)].

     '[qidx, q] = dpcmenco (sig, codebook, partition, predictor)'
          Also return the quantized values.

     '[qidx, q, d] = dpcmenco (...)'
          Also compute distortion: mean squared distance of original sig
          from the corresponding quantized values.

     See also: dpcmdeco, dpcmopt, quantiz.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Encode using differential pulse code modulation (DPCM).



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
dpcmopt


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1460
 -- Function File: PREDICTOR = dpcmopt (TRAINING_SET, ORD)
 -- Function File: [PREDICTOR, PARTITION, CODEBOOK] = dpcmopt
          (TRAINING_SET, ORD, CB)
     Optimize the DPCM parameters and codebook.

     It uses the Levinson-Durbin algorithm to find the all-pole IIR
     filter using the autocorrelation sequence.  After the best
     predictor is found, it uses the Lloyds algorithm to find the best
     codebook and partition for the interval.

     'predictor = dpcmopt (training_set, ord)'
          Optimize the DPCM parameters using the Levinson-Durbin
          algorithm.  The predictor vector describes a m-th order
          prediction for the output according to the following equation
          y(k) = p(1)sig(k-1) + p(2)sig(k-2) + ...  + p(m-1)sig(k-m+1) +
          p(m)sig(k-m) where the predictor vector is given by predictor
          = [0, p(1), p(2), p(3),..., p(m-1), p(m)].

          training_set is the training data used to find the best
          predictor.

          ord is the order of the desired prediction model.

     '[predictor, partition, codebook] = dpcmopt (training_set,ord,cb)'
          Optimize the DPCM parameters and also uses the Lloyds
          algorithm to find the best codebook and partition for the
          given training signal.

          cb might be the initial codebook used by Lloyds algorithm or
          the length of the desired codebook.

     See also: dpcmenco, dpcmdeco, levinson, lloyds.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 42
Optimize the DPCM parameters and codebook.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
egolaydec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1099
 -- Function File: [C, ERR] = egolaydec (R)
     Decode Extended Golay code.

     Given R, the received Extended Golay code, this function tries to
     decode it using the Extended Golay code parity check matrix.
     Extended Golay code (24,12) which can correct up to 3 errors.

     The received code R, needs to be of length Nx24, for encoding.  We
     can decode several codes at once, if they are stacked as a matrix
     of 24 columns, each code in a separate row.

     The generator used in here is same as obtained from the function
     'egolaygen'.

     The function returns C, the error-corrected code word from the
     received word.  If decoding failed, ERR value is 1, otherwise it is
     0.

     Extended Golay code (24,12) which can correct up to 3 errors.
     Decoding algorithm follows from Lin & Costello.

     Ref: Lin & Costello, pg 128, Ch4, "Error Control Coding", 2nd ed,
     Pearson.

          msg = rand (10, 12) > 0.5;
          c1 = egolayenc (msg);
          c1(:,1) = mod (c1(:,1) + 1, 2)
          c2 = egolaydec (c1)

     See also: egolaygen, egolayenc.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 27
Decode Extended Golay code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
egolayenc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 505
 -- Function File: C = egolayenc (M)
     Encode with Extended Golay code.

     The message M, needs to be of size Nx12, for encoding.  We can
     encode several messages, into codes at once, if they are stacked in
     the order suggested.

     The generator used in here is same as obtained from the function
     'egolaygen'.  Extended Golay code (24,12) which can correct up to 3
     errors.

          msg = rand (10, 12) > 0.5;
          c = egolayenc (msg)

     See also: egolaygen, egolaydec.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Encode with Extended Golay code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
egolaygen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 278
 -- Function File: [G, P] = egolaygen ()
     Extended Golay code generator matrix.

     Returns G, the Extended Golay code (24,12) generator matrix, which
     can correct up to 3 errors.  P is the parity check matrix, for this
     code.

     See also: egolaydec, egolayenc.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Extended Golay code generator matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
encode


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3390
 -- Function File: CODE = encode (MSG, N, K)
 -- Function File: CODE = encode (MSG, N, K, TYP)
 -- Function File: CODE = encode (MSG, N, K, TYP, OPT)
 -- Function File: [CODE, ADDED] = encode (...)

     Top level block encoder.  This function makes use of the lower
     level functions such as 'cyclpoly', 'cyclgen', 'hammgen', and
     'bchenco'.  The message to code is pass in MSG, the codeword length
     is N and the message length is K.  This function is used to encode
     messages using either:

     A [n,k] linear block code defined by a generator matrix
     A [n,k] cyclic code defined by a generator polynomial
     A [n,k] Hamming code defined by a primitive polynomial
     A [n,k] BCH code code defined by a generator polynomial

     The type of coding to use is defined by the variable TYP.  This
     variable is a string taking one of the values

     '"linear"'
     '"linear/binary"'
          A linear block code is assumed with the coded message CODE
          being in a binary format.  In this case the argument OPT is
          the generator matrix, and is required.
     '"cyclic"'
     '"cyclic/binary"'
          A cyclic code is assumed with the coded message CODE being in
          a binary format.  The generator polynomial to use can be
          defined in OPT.  The default generator polynomial to use will
          be 'cyclpoly (N, K)'
     '"hamming"'
     '"hamming/binary"'
          A Hamming code is assumed with the coded message CODE being in
          a binary format.  In this case N must be of an integer of the
          form '2^M-1', where M is an integer.  In addition K must be
          'N-M'.  The primitive polynomial to use can be defined in OPT.
          The default primitive polynomial to use is the same as defined
          by 'hammgen'.
     '"bch"'
     '"bch/binary"'
          A BCH code is assumed with the coded message CODE being in a
          binary format.  The generator polynomial to use can be defined
          in OPT.  The default generator polynomial to use will be
          'bchpoly (N, K)'

     In addition the argument "binary" above can be replaced with
     "decimal", in which case the message is assumed to be a decimal
     vector, with each value representing a symbol to be coded.  The
     binary format can be in two forms

     'An X-by-K matrix'
          Each row of this matrix represents a symbol to be coded
     'A vector'
          The symbols are created from groups of K elements of this
          vector.  If the vector length is not divisible by K, then
          zeros are added and the number of zeros added is returned in
          ADDED.

     It should be noted that all internal calculations are performed in
     the binary format.  Therefore for large values of N, it is
     preferable to use the binary format to pass the messages to avoid
     possible rounding errors.  Additionally, if repeated calls to
     'encode' will be performed, it is often faster to create a
     generator matrix externally with the functions 'hammgen' or
     'cyclgen', rather than let 'encode' recalculate this matrix at each
     iteration.  In this case TYP should be "linear".  The exception to
     this case is BCH codes, whose encoder is implemented directly from
     the polynomial and is significantly faster.

     See also: decode, cyclgen, cyclpoly, hammgen, bchenco, bchpoly.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 24
Top level block encoder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
eyediagram


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1507
 -- Function File: eyediagram (X, N)
 -- Function File: eyediagram (X, N, PER)
 -- Function File: eyediagram (X, N, PER, OFF)
 -- Function File: eyediagram (X, N, PER, OFF, STR)
 -- Function File: eyediagram (X, N, PER, OFF, STR, H)
 -- Function File: H = eyediagram (...)

     Plot the eye-diagram of a signal.  The signal X can be either in
     one of three forms

     A real vector
          In this case the signal is assumed to be real and represented
          by the vector X.  A single eye-diagram representing this
          signal is plotted.
     A complex vector
          In this case the in-phase and quadrature components of the
          signal are plotted separately.
     A matrix with two columns
          In this case the first column represents the in-phase and the
          second the quadrature components of a complex signal.

     Each line of the eye-diagram has N elements and the period is
     assumed to be given by PER.  The time axis is then [-PER/2 PER/2].
     By default PER is 1.

     By default the signal is assumed to start at -PER/2.  This can be
     overridden by the OFF variable, which gives the number of samples
     to delay the signal.

     The string STR is a plot style string (example "r+"), and by
     default is the default gnuplot line style.

     The figure handle to use can be defined by H.  If H is not given,
     then the next available figure handle is used.  The figure handle
     used in returned on HOUT.

     See also: scatterplot.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 33
Plot the eye-diagram of a signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fibodeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 887
 -- Function File: fibodeco (CODE)

     Returns the decoded Fibonacci value from the binary vectors CODE.
     Universal codes like Fibonacci codes have a useful synchronization
     property, only for 255 maximum value we have designed these
     routines.  We assume user has partitioned the code into several
     unique segments based on the suffix property of unique strings "11"
     and we just decode the parts.  Partitioning the stream is as simple
     as identifying the "11" pairs that occur, at the terminating ends.
     This system implements the standard binary Fibonacci codes, which
     means that row vectors can only contain 0 or 1.  Ref:
     <http://en.wikipedia.org/wiki/Fibonacci_coding>

          fibodeco ({[0 1 0 0 1 1]})
              => 10
          fibodeco ({[1 1], [0 1 1], [0 0 1 1], [1 0 1 1]})
              => [1, 2, 3, 4]

     See also: fiboenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 65
Returns the decoded Fibonacci value from the binary vectors CODE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
fiboenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1130
 -- Function File: fiboenco (NUM)

     Returns the cell-array of encoded Fibonacci value from the column
     vectors NUM.  Universal codes like Fibonacci codes have a useful
     synchronization property, only for 255 maximum value we have
     designed these routines.  We assume user has partitioned the code
     into several unique segments based on the suffix property of unique
     elements [1 1] and we just decode the parts.  Partitioning the
     stream is as simple as identifying the [1 1] pairs that occur, at
     the terminating ends.  This system implements the standard binary
     Fibonacci codes, which means that row vectors can only contain 0 or
     1.  Ref: http://en.wikipedia.org/wiki/Fibonacci_coding Ugly
     O(k.N^2) encoder.Ref: Wikipedia article accessed March, 2006.
     <http://en.wikipedia.org/wiki/Fibonacci_coding>, UCI Data
     Compression Book, <http://www.ics.uci.edu/~dan/pubs/DC-Sec3.html>,
     (accessed October 2006)

          fiboenco (10)
              => {[ 0 1 0 0 1 1]}
          fiboenco (1:4)
              => {[1 1], [0 1 1], [0 0 1 1], [1 0 1 1]}

     See also: fibodeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 78
Returns the cell-array of encoded Fibonacci value from the column
vectors NUM.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
fibosplitstream


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 734
 -- Function File: fibosplitstream (CODE)

     Returns the split data stream at the word boundaries.  Assuming the
     stream was originally encoded using 'fiboenco' and this routine
     splits the stream at the points where "11" occur together & gives
     us the code-words which can later be decoded from the 'fibodeco'
     This however doesn't mean that we intend to verify if all the
     codewords are correct, and in fact the last symbol in the return
     list can or can not be a valid codeword.

     A example use of 'fibosplitstream' would be
          fibodeco (fibosplitstream ([fiboenco(randint (1, 100, [0, 255])){:}]))
          fibodeco (fibosplitstream ([fiboenco(1:10){:}]))

     See also: fiboenco, fibodeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 53
Returns the split data stream at the word boundaries.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
fmdemod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 193
 -- Function File: fmdemod (X, FC, FS)
     Create the FM demodulation of the signal x with carrier frequency
     fs.  Where x is sample at frequency fs.

     See also: ammod, amdemod, fmmod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 69
Create the FM demodulation of the signal x with carrier frequency fs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
fmmod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 190
 -- Function File: fmmod (X, FC, FS)
     Create the FM modulation of the signal x with carrier frequency fs.
     Where x is sample at frequency fs.

     See also: ammod, fmdemod, amdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Create the FM modulation of the signal x with carrier frequency fs.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gen2par


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 439
 -- Function File: PAR = gen2par (GEN)
 -- Function File: GEN = gen2par (PAR)

     Converts binary generator matrix GEN to the parity check matrix PAR
     and visa-versa.  The input matrix must be in standard form.  That
     is a generator matrix must be k-by-n and in the form [eye(k) P] or
     [P eye(k)], and the parity matrix must be (n-k)-by-n and of the
     form [eye(n-k) P'] or [P' eye(n-k)].

     See also: cyclgen, hammgen.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Converts binary generator matrix GEN to the parity check matrix PAR and
visa-ver



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
genqammod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 564
 -- Function File: Y = genqammod (X, C)

     Modulates an information sequence of integers X in the range '[0
     ... M-1]' onto a quadrature amplitude modulated signal Y, where 'M
     = length (c) - 1' and C is a 1D vector specifying the signal
     constellation mapping to be used.  An example of combined 4PAM-4PSK
     is

          d = randint (1, 1e4, 8);
          c = [1+j -1+j -1-j 1-j 1+sqrt(3) j*(1+sqrt(3)) -1-sqrt(3) -j*(1+sqrt(3))];
          y = genqammod (d, c);
          z = awgn (y, 20);
          plot (z, "rx")

     See also: genqamdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Modulates an information sequence of integers X in the range '[0 ...



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
gftable


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 265
 -- Function File: gftable (M, PRIMPOLY)

     This function exists for compatibility with matlab.  As the Octave
     Galois fields store a copy of the lookup tables for every field in
     use internally, there is no need to use this function.

     See also: gf.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
This function exists for compatibility with matlab.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
gfweight


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 823
 -- Function File: W = gfweight (GEN)
 -- Function File: W = gfweight (GEN, "gen")
 -- Function File: W = gfweight (PAR, "par")
 -- Function File: W = gfweight (P, n)

     Calculate the minimum weight or distance of a linear block code.
     The code can be either defined by its generator or parity check
     matrix, or its generator polynomial.  By default if the first
     argument is a matrix, it is assumed to be the generator matrix of
     the code.  The type of the matrix can be defined by a flag "gen"
     for the generator matrix or "par" for the parity check matrix.

     If the first argument is a vector, it is assumed that it defines
     the generator polynomial of the code.  In this case a second
     argument is required that defines the codeword length.

     See also: hammgen, cyclpoly, bchpoly.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 64
Calculate the minimum weight or distance of a linear block code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
golombdeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 958
 -- Function File: golombdeco (CODE, M)

     Returns the Golomb decoded signal vector using CODE and M.
     Compulsory m is need to be specified.  A restrictions is that a
     signal set must strictly be non-negative.  The value of code is a
     cell array of row-vectors which have the encoded Golomb value for a
     single sample.  The Golomb algorithm is used to encode the "code"
     and only that can be meaningfully decoded.  CODE is assumed to have
     been of format generated by the function 'golombenco'.  Also the
     parameter M need to be a non-zero number, unless which it makes
     divide-by-zero errors.  This function works backward the Golomb
     algorithm see 'golombenco' for more details on that.  Reference:
     Solomon Golomb, Run length Encodings, 1966 IEEE Trans Info Theory

     An example of the use of 'golombdeco' is
          golombdeco (golombenco (1:4, 2), 2)
              => [1 2 3 4]

     See also: golombenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Returns the Golomb decoded signal vector using CODE and M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
golombenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1853
 -- Function File: golombenco (SIG, M)

     Returns the Golomb coded signal as cell array.  Also total length
     of output code in bits can be obtained.  This function uses a M
     need to be supplied for encoding signal vector into a Golomb coded
     vector.  A restrictions is that a signal set must strictly be
     non-negative.  Also the parameter M need to be a non-zero number,
     unless which it makes divide-by-zero errors.  The Golomb algorithm
     [1], is used to encode the data into unary coded quotient part
     which is represented as a set of 1's separated from the K-part
     (binary) using a zero.  This scheme doesn't need any kind of
     dictionaries, it is a parameterized prefix codes.  Implementation
     is close to O(N^2), but this implementation *may be* sluggish,
     though correct.  Details of the scheme are, to encode the
     remainder(r of number N) using the floor(log2(m)) bits when rem is
     in range 0:(2^ceil(log2(m)) - N), and encode it as
     r+(2^ceil(log2(m)) - N), using total of 2^ceil(log2(m)) bits in
     other instance it doesn't belong to case 1.  Quotient is coded
     simply just using the unary code.  Also according to [2] Golomb
     codes are optimal for sequences using the Bernoulli probability
     model: P(n)=p^n-1.q & p+q=1, and when M=[1/log2(p)], or P=2^(1/M).

     Reference: 1.  Solomon Golomb, Run length Encodings, 1966 IEEE
     Trans Info' Theory.  2.  Khalid Sayood, Data Compression, 3rd
     Edition

     An example of the use of 'golombenco' is
          golombenco (1:4, 2)
              => {[0 1], [1 0 0], [1 0 1], [1 1 0 0]}
          golombenco (1:10, 2)
              => {[0 1], [1 0 0], [1 0 1], [1 1 0 0],
                  [1 1 0 1], [1 1 1 0 0], [1 1 1 0 1], [1 1 1 1 0 0],
                  [1 1 1 1 0 1], [1 1 1 1 1 0 0]}

     See also: golombdeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Returns the Golomb coded signal as cell array.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
hammgen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 788
 -- Function File: H = hammgen (M)
 -- Function File: H = hammgen (M, P)
 -- Function File: [H, G] = hammgen (...)
 -- Function File: [H, G, N, K] = hammgen (...)

     Produce the parity check and generator matrices of a Hamming code.
     The variable M defines the [N,K] Hamming code where 'N = 2 ^ M - 1'
     and 'K = N - M'.  M must be between 3 and 16.

     The parity check matrix is generated relative to the primitive
     polynomial of GF(2^M).  If P is specified the default primitive
     polynomial of GF(2^M) is overridden.  P must be a valid primitive
     polynomial of the correct order for GF(2^M).

     The parity check matrix is returned in the M by N matrix H, and if
     requested the generator matrix is returned in the K by N matrix G.

     See also: gen2par.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 66
Produce the parity check and generator matrices of a Hamming code.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
helintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 108
 -- Function File: OUTDATA = helintrlv (DATA, COL, NGRP, STP)
     COL-by-NGRP.

     See also: heldeintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
COL-by-NGRP.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
helscandeintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 137
 -- Function File: OUTDATA = helscandeintrlv (DATA, NROWS, NCOLS,
          NSHIFT)
     NROWS-by-NCOLS.

     See also: helscandeintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
NROWS-by-NCOLS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
helscanintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 125
 -- Function File: OUTDATA = helscanintrlv (DATA, NROWS, NCOLS, NSHIFT)
     NROWS-by-NCOLS.

     See also: helscandeintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
NROWS-by-NCOLS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
huffmandeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 894
 -- Function File: SIG = huffmandeco (HCODE, DICT)
     Decode signal encoded by 'huffmanenco'.

     This function uses a dict built from the 'huffmandict' and uses it
     to decode a signal list into a Huffman list.  A restriction is that
     HCODE is expected to be a binary code

     The returned SIG set that strictly belongs in the range '[1,N]'
     with 'N = length (DICT)'.  Also DICT can only be from the
     'huffmandict' routine.  Whenever decoding fails, those signal
     values a re indicated by '-1', and we successively try to restart
     decoding from the next bit that hasn't failed in decoding,
     ad-infinitum.  An example of the use of 'huffmandeco' is:

          hd    = huffmandict (1:4, [0.5 0.25 0.15 0.10]);
          hcode = huffmanenco (1:4, hd);
          back  = huffmandeco (hcode, hd)
              => [1 2 3 4]

     See also: huffmandict, huffmanenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Decode signal encoded by 'huffmanenco'.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
huffmandict


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1576
 -- Function File: huffmandict (SYMB, PROB)
 -- Function File: huffmandict (SYMB, PROB, TOGGLE)
 -- Function File: huffmandict (SYMB, PROB, TOGGLE, MINVAR)

     Builds a Huffman code, given a probability list.  The Huffman codes
     per symbol are output as a list of strings-per-source symbol.  A
     zero probability symbol is NOT assigned any codeword as this symbol
     doesn't occur in practice anyway.

     TOGGLE is an optional argument with values 1 or 0, that starts
     building a code based on 1s or 0s, defaulting to 0.  Also MINVAR is
     a boolean value that is useful in choosing if you want to optimize
     buffer for transmission in the applications of Huffman coding,
     however it doesn't affect the type or average codeword length of
     the generated code.  An example of the use of 'huffmandict' is

          huffmandict (symbols, [0.5 0.25 0.15 0.1], 1)
              => {[0], [1 0], [1 1 1], [1 1 0]}
          huffmandict (symbols, 0.25 * ones (1,4), 1)
              => {[1 1], [1 0], [0 1], [0 0]}

          prob = [0.5 0 0.25 0.15 0.1];
          dict = huffmandict (1:5, prob, 1);
          entropy (prob)
              => 2.3219
          laverage (dict, prob)
              => 1.8500

          x = [0.2 0.4 0.2 0.1 0.1];
          huffmandict (1, x, 0, true)
              => {[1 0], [0 0], [1 1], [0 1 0], [0 1 1]}
          huffmandict (1, x)
              => {[0 1], [1], [0 0 1], [0 0 0 0], [0 0 0 1]}

     Reference: Dr.Rao's course EE5351 Digital Video Coding, at
     UT-Arlington.

     See also: huffmandeco, huffmanenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Builds a Huffman code, given a probability list.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
huffmanenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 603
 -- Function File: huffmanenco (SIG, DICT)

     Returns the Huffman encoded signal using DICT.  This function uses
     a DICT built from the 'huffmandict' and uses it to encode a signal
     list into a Huffman list.  A restrictions is that a signal set must
     strictly belong in the range '[1,N]' with 'N = length (dict)'.
     Also DICT can only be from the 'huffmandict' routine.  An example
     of the use of 'huffmanenco' is

          hd = huffmandict (1:4, [0.5 0.25 0.15 0.10]);
          huffmanenco (1:4, hd)
              => [1 0 1 0 0 0 0 0 1]

     See also: huffmandict, huffmandeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Returns the Huffman encoded signal using DICT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
intrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 135
 -- Function File: INTRLVD = intrlv (DATA, ELEMENTS)
     Interleaved elements of DATA according to ELEMENTS.

     See also: deintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Interleaved elements of DATA according to ELEMENTS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
istrellis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 326
 -- Function File: istrellis (T)
 -- Function File: [STATUS, TEXT] = istrellis (T)

     Return true if T is a valid trellis structure.

     If called with two output arguments, TEXT contains a string
     indicating a reason if STATUS is false or an empty string if STATUS
     is true.

     See also: poly2trellis, struct.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Return true if T is a valid trellis structure.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
lloyds


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1900
 -- Function File: [TABLE, CODES] = lloyds (SIG, INIT_CODES)
 -- Function File: [TABLE, CODES] = lloyds (SIG, LEN)
 -- Function File: [TABLE, CODES] = lloyds (SIG, ..., TOL)
 -- Function File: [TABLE, CODES] = lloyds (SIG, ..., TOL, TYPE)
 -- Function File: [TABLE, CODES, DIST] = lloyds (...)
 -- Function File: [TABLE, CODES, DIST, RELDIST] = lloyds (...)

     Optimize the quantization table and codes to reduce distortion.
     This is based on the article by Lloyd

     S. Lloyd _Least squared quantization in PCM_, IEEE Trans Inform
     Theory, Mar 1982, no 2, p129-137

     which describes an iterative technique to reduce the quantization
     error by making the intervals of the table such that each interval
     has the same area under the PDF of the training signal SIG.  The
     initial codes to try can either be given in the vector INIT_CODES
     or as scalar LEN.  In the case of a scalar the initial codes will
     be an equi-spaced vector of length LEN between the minimum and
     maximum value of the training signal.

     The stopping criteria of the iterative algorithm is given by

          abs(DIST(n) - DIST(n-1)) < max(TOL, abs(EPS*max(SIG))

     By default TOL is 1.e-7.  The final input argument determines how
     the updated table is created.  By default the centroid of the
     values of the training signal that fall within the interval
     described by CODES are used to update TABLE.  If TYPE is any other
     string than "centroid", this behavior is overridden and TABLE is
     updated as follows.

          TABLE = (CODE(2:length(CODE)) + CODE(1:length(CODE-1))) / 2

     The optimized values are returned as TABLE and CODE.  In addition
     the distortion of the optimized codes representing the training
     signal is returned as DIST.  The relative distortion in the final
     iteration is also returned as RELDIST.

     See also: quantiz.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Optimize the quantization table and codes to reduce distortion.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lz77deco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 347
 -- Function File: M = lz77deco (C, ALPH, LA, N)
     Lempel-Ziv 77 source algorithm decoding implementation.  Where

     M
          message decoded (1xN).
     C
          encoded message (Mx3).
     ALPH
          size of alphabet.
     LA
          lookahead buffer size.
     N
          sliding window buffer size.

     See also: lz77enco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Lempel-Ziv 77 source algorithm decoding implementation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
lz77enco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 298
 -- Function File: C = lz77enco (M, ALPH, LA, N)
     Lempel-Ziv 77 source algorithm implementation.  Where

     C
          encoded message (Mx3).
     ALPH
          size of alphabet.
     LA
          lookahead buffer size.
     N
          sliding window buffer size.

     See also: lz77deco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 46
Lempel-Ziv 77 source algorithm implementation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
matdeintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 171
 -- Function File: INTRLVD = matdeintrlv (DATA, NROWS, NCOLS)
     Restore elements of DATA with a temporary matrix of size
     NROWS-by-NCOLS.

     See also: matintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 72
Restore elements of DATA with a temporary matrix of size NROWS-by-NCOLS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
matintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 175
 -- Function File: INTRLVD = matintrlv (DATA, NROWS, NCOLS)
     Interleaved elements of DATA with a temporary matrix of size
     NROWS-by-NCOLS.

     See also: matdeintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 76
Interleaved elements of DATA with a temporary matrix of size
NROWS-by-NCOLS.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
minpol


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 261
 -- Function File: minpol (V)

     Finds the minimum polynomial for elements of a Galois Field.  For a
     vector V with N components, representing N values in a Galois Field
     GF(2^M), return the minimum polynomial in GF(2) representing those
     values.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 60
Finds the minimum polynomial for elements of a Galois Field.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
modmap


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 2639
 -- Function File: modmap (METHOD, ...)
 -- Function File: y = modmap (X, FD, FS, "ask", M)
 -- Function File: y = modmap (X, FD, FS, "fsk", M, TONE)
 -- Function File: y = modmap (X, FD, FS, "msk")
 -- Function File: y = modmap (X, FD, FS, "psk", M)
 -- Function File: y = modmap (X, FD, FS, "qask", M)
 -- Function File: y = modmap (X, FD, FS, "qask/cir", NSIG, AMP, PHS)
 -- Function File: y = modmap (X, FD, FS, "qask/arb", INPHASE, QUADR)
 -- Function File: y = modmap (X, FD, FS, "qask/arb", MAP)

     Mapping of a digital signal to an analog signal.  With no output
     arguments 'modmap' plots the constellation of the mapping.  In this
     case the first argument must be the string METHOD defining one of
     "ask", "fsk", "msk", "qask", "qask/cir" or "qask/arb".  The
     arguments following the string METHOD are generally the same as
     those after the corresponding string in the function call without
     output arguments.  The exception is 'modmap ("msk", FD)'.

     With an output argument, Y is the complex mapped analog signal.  In
     this case the arguments X, FD and FS are required.  The variable X
     is the digital signal to be mapped, FD is the sampling rate of the
     of digital signal and the FS is the sampling rate of the analog
     signal.  It is required that 'FS/FD' is an integer.

     The available mapping of the digital signal are

     "ask"
          Amplitude shift keying
     "fsk"
          Frequency shift keying
     "msk"
          Minimum shift keying
     "psk"
          Phase shift keying
     "qask"
     "qsk"
     "qam"
          Quadrature amplitude shift keying

     In addition the "qask", "qsk" and "qam" method can be modified with
     the flags "/cir" or "/arb".  That is "qask/cir" and "qask/arb", etc
     are valid methods and give circular- and arbitrary-qask mappings
     respectively.

     The additional argument M is the order of the modulation to use.  M
     must be larger than the largest element of X.  The variable TONE is
     the FSK tone to use in the modulation.

     For "qask/cir", the additional arguments are the same as for
     'apkconst', and you are referred to 'apkconst' for the definitions
     of the additional variables.

     For "qask/arb", the additional arguments INPHASE and QUADR give the
     in-phase and quadrature components of the mapping, in a similar
     mapping to the outputs of 'qaskenco' with one argument.  Similar
     MAP represents the in-phase and quadrature components of the
     mapping as the real and imaginary parts of the variable MAP.

     See also: demodmap, dmodce, amodce, apkconst, qaskenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 48
Mapping of a digital signal to an analog signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
oct2dec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 191
 -- Function File: D = oct2dec (C)

     Convert octal to decimal values.

     Each element of the octal matrix C is converted to a decimal value.

     See also: base2dec, bin2dec, dec2bin.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 32
Convert octal to decimal values.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pamdemod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 734
 -- Function File: Y = pamdemod (X, M)
 -- Function File: Y = pamdemod (X, M, PHI)
 -- Function File: Y = pamdemod (X, M, PHI, TYPE)

     Demodulates a pulse amplitude modulated signal X into an
     information sequence of integers in the range '[0 ... M-1]'.  PHI
     controls the initial phase and TYPE controls the constellation
     mapping.  If TYPE is set to "Bin" will result in binary encoding,
     in contrast, if set to "Gray" will give Gray encoding.  An example
     of Gray-encoded 8-PAM is

          d = randint (1, 1e4, 8);
          y = pammod (d, 8, 0, "gray");
          z = awgn (y, 20);
          d_est = pamdemod (z, 8, 0, "gray");
          plot (z, "rx")
          biterr (d, d_est)

     See also: pammod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Demodulates a pulse amplitude modulated signal X into an information
sequence of



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pammod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 656
 -- Function File: Y = pammod (X, M)
 -- Function File: Y = pammod (X, M, PHI)
 -- Function File: Y = pammod (X, M, PHI, TYPE)

     Modulates an information sequence of integers X in the range '[0
     ... M-1]' onto a pulse amplitude modulated signal Y.  PHI controls
     the initial phase and TYPE controls the constellation mapping.  If
     TYPE is set to "Bin" will result in binary encoding, in contrast,
     if set to "Gray" will give Gray encoding.  An example of
     Gray-encoded 8-PAM is

          d = randint (1, 1e4, 8);
          y = pammod (d, 8, 0, "gray");
          z = awgn (y, 20);
          plot (z, "rx")

     See also: pamdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Modulates an information sequence of integers X in the range '[0 ...



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
poly2trellis


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1814
 -- Function File: T = poly2trellis (M, G)

     Convert convolutional code generator polynomials into trellis form.

     The arguments M and G together describe a rate k/n feedforward
     convolutional encoder.  The output T is a trellis structure
     describing the same encoder with the fields listed below.

     The vector M is a k-by-1 array containing the lengths of each of
     the shift registers for the k input bits to the encoder.

     The matrix G is a k-by-n octal-value matrix describing the
     generation of each of the n outputs from each of the k inputs.  For
     a particular entry of G, the least-significant bit corresponds to
     the most-delayed input bit in the kth shift-register.

     The returned trellis structure contains the following fields:

     'numInputSymbols'
          The number of k-bit input symbols possible, i.e.  2^k.

     'numOutputSymbols'
          The number of n-bit output symbols possible, i.e.  2^n.

     'numStates'
          The number of states in the trellis.

     'nextStates'
          The state transition table for the trellis.  The ith row
          contains the indices of the states reachable from the (i-1)th
          state for each possible input symbol.

     'outputs'
          A table of octal-encoded output values for the trellis.  The
          ith row contains values representing the output symbols
          produced in the (i-1)th state for each possible input symbol.

     Input symbols, output symbols, and encoder states are all
     interpreted with the lowest indices being the most significant
     bits.

     References:

     [1] S. Lin and D. J. Costello, "Convolutional codes," in 'Error
     Control Coding', 2nd ed.  Upper Saddle River, NJ: Pearson, 2004,
     ch.  11, pp.  453-513.

     See also: istrellis.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 67
Convert convolutional code generator polynomials into trellis form.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 14
prbs_generator


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1709
 -- Function File: PRBS = prbs_generator (POLYNOMIAL, CONNECTIONS,
          INITSTATE)
     Implement book keeping for a Pseudo-Random Binary Sequence ( PRBS )
     also called as a Linear Feedback Shift Register.

     Given a polynomial create a PRBS structure for that polynomial.
     Now all we need is to just create this polynomial and make it work.
     polynomial must be a vector containing the powers of x and an
     optional value 1.  eg: x^3 + x^2 + x + 1 must be written as [3 2 1
     0] all the coefficients are either 1 or 0.  It generates only a
     Binary \ sequence, and the generator polynomial need to be only a
     binary polynomial in GF(2).

     connections, contains a struct of vectors where each vector is the
     connection list mapping its vec(2:end) elements to the vec(1)
     output.

     Example: If you had a PRBS shift register like the diagram below
     with 4 registers we use representation by polynomial of [ 1 2 3 4],
     and feedback connections between [ 1 3 4 ].  The output PRBS
     sequence is taken from the position 4.

           +---+    +----+   +---+   +---+
           | D |----| D  |---| D |---| D |
           +---+    +----+   +---+   +---+
             |                 |       |
             \                 /      /
             [+]---------------+------+
            1   +    0.D   + 1.D^2 + 1.D^3

     The code to implement this PRBS with a start state of [1 0 1 1]
     will be:

          prbs = prbs_generator ([1 3 4], {[1 3 4]}, [1 0 1 1]);
          x = prbs_sequence (prbs)
              => x = 15
          prbs_iterator (prbs, 15)
              => [1 1 0 1 0 1 1 1 1 0 0 0 1 0 0]

     See also: prbs_iterator, prbs_sequence.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Implement book keeping for a Pseudo-Random Binary Sequence ( PRBS ) also
called 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
prbs_iterator


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1372
 -- Function File: [OUTPUTSEQ, PRBS] = prbs_iterator (PRBS, ITERATIONS)
     This function generates the output bits from the PRBS state, for
     the number of iterations specified.

     First argument is the PRBS structure obtained from prbs_generator.
     PRBS iterations is specified in the second argument.  PRBS start
     state is taken from the prbs.sregs.

     Second argument of the output is PRBS structure with a new state.
     This allows usage like:

          [seq, prbs] = prbs_iterator (prbs, niterations);

     while the state of the PRBS is updated.

     Example: If you had a PRBS shift register like the diagram below
     with 4 registers we use representation by polynomial of [ 1 2 3 4],
     and feedback connections between [ 1 3 4 ].  The output PRBS
     sequence is taken from the position 4.

           +---+    +----+   +---+   +---+
           | D |----| D  |---| D |---| D |
           +---+    +----+   +---+   +---+
             |                 |       |
             \                 /      /
             [+]---------------+------+
            1   +    0.D   + 1.D^2 + 1.D^3

     The code to implement this PRBS will be

          prbs = prbs_generator ([1 3 4], {[1 3 4]}, [1 0 1 1]);
          x = prbs_iterator (prbs, 15)
              => x = [1 1 0 1 0 1 1 1 1 0 0 0 1 0 0]

     See also: prbs_generator, prbs_sequence.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
This function generates the output bits from the PRBS state, for the
number of i



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
prbs_sequence


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1103
 -- Function File: [ITRS, SEQ] = prbs_sequence (PRBS)
     Implement book keeping for a Pseudo-Random Binary Sequence ( PRBS )
     also called as a Linear Feedback Shift Register.

     For the given PRBS in a intial state, compute the PRBS sequence
     length.  Length is period of output when the PRBS state is same as
     the start state of PRBS.

     Example: If you had a PRBS shift register like the diagram below
     with 4 registers we use representation by polynomial of [ 1 2 3 4],
     and feedback connections between [ 1 3 4 ].  The output PRBS
     sequence is taken from the position 4.

           +---+    +----+   +---+   +---+
           | D |----| D  |---| D |---| D |
           +---+    +----+   +---+   +---+
             |                 |       |
             \                 /      /
             [+]---------------+------+
            1   +    0.D   + 1.D^2 + 1.D^3

     The code to implement this PRBS will be

          prbs = prbs_generator ([1 3 4], {[1 3 4]}, [1 0 1 1]);
          x = prbs_sequence (prbs)
              => x = 15

     See also: prbs_generator.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Implement book keeping for a Pseudo-Random Binary Sequence ( PRBS ) also
called 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
pskdemod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 752
 -- Function File: Y = pamdemod (X, M)
 -- Function File: Y = pamdemod (X, M, PHI)
 -- Function File: Y = pamdemod (X, M, PHI, TYPE)

     Demodulates a complex-baseband phase shift keying modulated signal
     into an information sequence of integers in the range '[0 ...
     M-1]'.  PHI controls the initial phase and TYPE controls the
     constellation mapping.  If TYPE is set to "Bin" will result in
     binary encoding, in contrast, if set to "Gray" will give Gray
     encoding.  An example of Gray-encoded 8-PSK is

          d = randint (1, 1e3, 8);
          y = pskmod (d, 8, 0, "gray");
          z = awgn (y, 20);
          d_est = pskdemod (z, 8, 0, "gray");
          plot (z, "rx")
          biterr (d, d_est)

     See also: pskmod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Demodulates a complex-baseband phase shift keying modulated signal into
an infor



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
pskmod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 675
 -- Function File: Y = pskmod (X, M)
 -- Function File: Y = pskmod (X, M, PHI)
 -- Function File: Y = pskmod (X, M, PHI, TYPE)

     Modulates an information sequence of integers X in the range '[0
     ... M-1]' onto a complex baseband phase shift keying modulated
     signal Y.  PHI controls the initial phase and TYPE controls the
     constellation mapping.  If TYPE is set to "Bin" will result in
     binary encoding, in contrast, if set to "Gray" will give Gray
     encoding.  An example of Gray-encoded QPSK is

          d = randint (1, 5e3, 4);
          y = pskmod (d, 4, 0, "gray");
          z = awgn (y, 30);
          plot (z, "rx")

     See also: pskdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Modulates an information sequence of integers X in the range '[0 ...



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qamdemod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 141
 -- Function File: qamdemod (X, M)
     Create the QAM demodulation of x with a size of alphabet m.

     See also: qammod, pskmod, pskdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 59
Create the QAM demodulation of x with a size of alphabet m.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
qammod


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 139
 -- Function File: qammod (X, M)
     Create the QAM modulation of x with a size of alphabet m.

     See also: qamdemod, pskmod, pskdemod.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 57
Create the QAM modulation of x with a size of alphabet m.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qaskdeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1197
 -- Function File: MSG = qaskdeco (C, M)
 -- Function File: MSG = qaskdeco (INPHASE, QUADR, M)
 -- Function File: MSG = qaskdeco (..., MNMX)

     Demaps an analog signal using a square QASK constellation.  The
     input signal maybe either a complex variable C, or as two real
     variables INPHASE and QUADR representing the in-phase and
     quadrature components of the signal.

     The argument M must be a positive integer power of 2.  By default
     the same constellation as created in 'qaskenco' is used by
     'qaskdeco'.  If is possible to change the values of the minimum and
     maximum of the in-phase and quadrature components of the
     constellation to account for linear changes in the signal values in
     the received signal.  The variable MNMX is a 2-by-2 matrix of the
     following form

               |    min in-phase       ,    max in-phase       |
               |    min quadrature     ,    max quadrature     |

     If 'sqrt (M)' is an integer, then 'qaskenco' uses a Gray mapping.
     Otherwise, an attempt is made to create a nearly square mapping
     with a minimum Hamming distance between adjacent constellation
     points.

     See also: qaskenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Demaps an analog signal using a square QASK constellation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qaskenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1674
 -- Function File: qaskenco (M)
 -- Function File: qaskenco (MSG, M)
 -- Function File: Y = qaskenco (...)
 -- Function File: [INPHASE, QUADR] = qaskenco (...)

     Map a digital signal using a square QASK constellation.  The
     argument M must be a positive integer power of 2.  With two input
     arguments the variable MSG represents the message to be encoded.
     The values of MSG must be between 0 and 'M-1'.  In all cases
     'qaskenco (M)' is equivalent to 'qaskenco (1:M, M)'

     Three types of outputs can be created depending on the number of
     output arguments.  That is

     No output arguments
          In this case 'qaskenco' plots the constellation.  Only the
          points in MSG are plotted, which in the case of a single input
          argument is all constellation points.
     A single output argument
          The returned variable is a complex variable representing the
          in-phase and quadrature components of the mapped message MSG.
          With, a single input argument this effectively gives the
          mapping from symbols to constellation points
     Two output arguments
          This is the same as one output argument, expect that the
          in-phase and quadrature components are returned explicitly.
          That is

               c = qaskenco (msg, m);
               [a, b] = qaskenco (msg, m);
               all (c == a + 1i*b)
                   => 1

     If 'sqrt (M)' is an integer, then 'qaskenco' uses a Gray mapping.
     Otherwise, an attempt is made to create a nearly square mapping
     with a minimum Hamming distance between adjacent constellation
     points.

     See also: qaskdeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Map a digital signal using a square QASK constellation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 5
qfunc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 88
 -- Function File: Y = qfunc (X)
     Compute the Q function.

     See also: erfc, erf.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 23
Compute the Q function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
qfuncinv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 99
 -- Function File: Y = qfuncinv (X)
     Compute the inverse Q function.

     See also: erfc, erf.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 31
Compute the inverse Q function.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
quantiz


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 811
 -- Function File: QIDX = quantiz (X, TABLE)
 -- Function File: [QIDX, Q] = quantiz (X, TABLE, CODES)
 -- Function File: [ QIDX, Q, D] = quantiz (...)

     Quantization of an arbitrary signal relative to a partitioning.

     'qidx = quantiz (x, table)'
          Determine position of x in strictly monotonic table.  The
          first interval, using index 0, corresponds to x <= table(1).
          Subsequent intervals are table(i-1) < x <= table(i).

     '[qidx, q] = quantiz (x, table, codes)'
          Associate each interval of the table with a code.  Use
          codes(1) for x <= table(1) and codes(n+1) for table(n) < x <=
          table(n+1).

     '[qidx, q, d] = quantiz (...)'
          Compute distortion as mean squared distance of x from the
          corresponding quantization values.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 63
Quantization of an arbitrary signal relative to a partitioning.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 12
randdeintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 158
 -- Function File: INTRLVD = randdeintrlv (DATA, STATE)
     Restore elements of DATA with a random permutation.

     See also: randintrlv, intrlv, deintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Restore elements of DATA with a random permutation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
randerr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 995
 -- Function File: B = randerr (N)
 -- Function File: B = randerr (N, M)
 -- Function File: B = randerr (N, M, ERR)
 -- Function File: B = randerr (N, M, ERR, SEED)

     Generate a matrix of random bit errors.  The size of the matrix is
     N rows by M columns.  By default M is equal to N.  Bit errors in
     the matrix are indicated by a 1.

     The variable ERR determines the number of errors per row.  By
     default the return matrix B has exactly one bit error per row.  If
     ERR is a scalar, there each row of B has exactly this number of
     errors per row.  If ERR is a vector then each row has a number of
     errors that is in this vector.  Each number of errors has an equal
     probability.  If ERR is a matrix with two rows, then the first row
     determines the number of errors and the second their probabilities.

     The variable SEED allows the random number generator to be seeded
     with a fixed value.  The initial seed will be restored when
     returning.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Generate a matrix of random bit errors.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
randint


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 808
 -- Function File: B = randint (N)
 -- Function File: B = randint (N, M)
 -- Function File: B = randint (N, M, RANGE)
 -- Function File: B = randint (N, M, RANGE, SEED)

     Generate a matrix of random binary numbers.  The size of the matrix
     is N rows by M columns.  By default M is equal to N.

     The range in which the integers are generated will is determined by
     the variable RANGE.  If RANGE is an integer, the value will lie in
     the range [0,RANGE-1], or [RANGE+1,0] if RANGE is negative.  If
     RANGE contains two elements the integers will lie within these two
     elements, inclusive.  By default RANGE is assumed to be [0:1].

     The variable SEED allows the random number generator to be seeded
     with a fixed value.  The initial seed will be restored when
     returning.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 43
Generate a matrix of random binary numbers.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 10
randintrlv


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 148
 -- Function File: INTRLVD = randintrlv (DATA, STATE)
     Interleaves elements of DATA with a random permutation.

     See also: intrlv, deintrlv.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 55
Interleaves elements of DATA with a random permutation.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
randsrc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 854
 -- Function File: B = randsrc (N)
 -- Function File: B = randsrc (N, M)
 -- Function File: B = randsrc (N, M, ALPHABET)
 -- Function File: B = randsrc (N, M, ALPHABET, SEED)

     Generate a matrix of random symbols.  The size of the matrix is N
     rows by M columns.  By default M is equal to N.

     The variable ALPHABET can be either a row vector or a matrix with
     two rows.  When ALPHABET is a row vector the symbols returned in B
     are chosen with equal probability from ALPHABET.  When ALPHABET has
     two rows, the second row determines the probability with which each
     of the symbols is chosen.  The sum of the probabilities must equal
     1.  By default ALPHABET is [-1 1].

     The variable SEED allows the random number generator to be seeded
     with a fixed value.  The initial seed will be restored when
     returning.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 36
Generate a matrix of random symbols.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
reedmullerdec


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1195
 -- Function File: reedmullerdec (VV, G, R, M)

     Decode the received code word VV using the RM-generator matrix G,
     of order R, M, returning the code-word C. We use the standard
     majority logic vote method due to Irving S. Reed.  The received
     word has to be a matrix of column size equal to to code-word size
     (i.e 2^m).  Each row is treated as a separate received word.

     The second return value is the message M got from C.

     G is obtained from definition type construction of Reed-Muller
     code, of order R, length 2^M.  Use the function reedmullergen, for
     the generator matrix for the (R,M) order RM code.

     Faster code constructions (also easier) exist, but since finding
     permutation order of the basis vectors, is important, we stick with
     the standard definitions.  To use decoder function reedmullerdec,
     you need to use this specific generator function.

     see: Lin & Costello, Ch.4, "Error Control Coding", 2nd Ed, Pearson.

          g = reedmullergen (2, 4);
          msg = rand (1, 11) > 0.5;
          c = mod (msg * g, 2);
          [dec_c, dec_m] = reedmullerdec (c, g, 2, 4)

     See also: reedmullergen, reedmullerenc.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Decode the received code word VV using the RM-generator matrix G, of
order R, M,



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
reedmullerenc


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 594
 -- Function File: reedmullerenc (MSG, R, M)

     Definition type construction of Reed-Muller code, of order R,
     length 2^M.  This function returns the generator matrix for the
     said order RM code.

     Encodes the given message word/block, of column size k,
     corresponding to the RM(R,M), and outputs a code matrix C, on each
     row with corresponding codeword.  The second return value is the G,
     which is generator matrix used for this code.

          msg = rand (10, 11) > 0.5;
          [c, g] = reedmullerenc (msg, 2, 4);

     See also: reedmullerdec, reedmullergen.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Definition type construction of Reed-Muller code, of order R, length
2^M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 13
reedmullergen


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 854
 -- Function File: reedmullergen (R, M)

     Definition type construction of Reed-Muller code, of order R,
     length 2^M.  This function returns the generator matrix for the
     said order RM code.

     RM(r,m) codes are characterized by codewords, 'sum ( (m,0) + (m,1)
     + ... + (m,r)'.  Each of the codeword is got through spanning the
     space, using the finite set of m-basis codewords.  Each codeword is
     2^M elements long.  see: Lin & Costello, "Error Control Coding",
     2nd Ed.

     Faster code constructions (also easier) exist, but since finding
     permutation order of the basis vectors, is important, we stick with
     the standard definitions.  To use decoder function reedmullerdec,
     you need to use this specific generator function.

          g = reedmullergen (2, 4);

     See also: reedmullerdec, reedmullerenc.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 73
Definition type construction of Reed-Muller code, of order R, length
2^M.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
ricedeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 739
 -- Function File: ricedeco (CODE, K)

     Returns the Rice decoded signal vector using CODE and K.
     Compulsory K is need to be specified.  A restrictions is that a
     signal set must strictly be non-negative.  The value of code is a
     cell array of row-vectors which have the encoded rice value for a
     single sample.  The Rice algorithm is used to encode the "code" and
     only that can be meaningfully decoded.  CODE is assumed to have
     been of format generated by the function 'riceenco'.

     Reference: Solomon Golomb, Run length Encodings, 1966 IEEE Trans
     Info Theory

     An example of the use of 'ricedeco' is
          ricedeco (riceenco (1:4, 2), 2)
              => [1 2 3 4]

     See also: riceenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 56
Returns the Rice decoded signal vector using CODE and K.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 8
riceenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1313
 -- Function File: riceenco (SIG, K)

     Returns the Rice encoded signal using K or optimal K .  Default
     optimal K is chosen between 0-7.  Currently no other way to
     increase the range except to specify explicitly.  Also returns K
     parameter used (in case it were to be chosen optimally) and LTOT
     the total length of output code in bits.  This function uses a K if
     supplied or by default chooses the optimal K for encoding signal
     vector into a rice coded vector.  A restrictions is that a signal
     set must strictly be non-negative.  The Rice algorithm is used to
     encode the data into unary coded quotient part which is represented
     as a set of 1's separated from the K-part (binary) using a zero.
     This scheme doesn't need any kind of dictionaries and its close to
     O(N), but this implementation *may be* sluggish, though correct.

     Reference: Solomon Golomb, Run length Encodings, 1966 IEEE Trans
     Info' Theory

     An example of the use of 'riceenco' is
          riceenco (1:4)
              => {[0 1], [1 0 0], [1 0 1], [1 1 0 0]}
          riceenco (1:10, 2)
              => {[0 0 1], [0 1 0], [0 1 1], [1 0 0 0],
                  [1 0 0 1], [1 0 1 0], [1 0 1 1], [1 1 0 0 0],
                  [1 1 0 0 1], [1 1 0 1 0]}

     See also: ricedeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 54
Returns the Rice encoded signal using K or optimal K .



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rledeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 379
 -- Function File: rledeco (MESSAGE)

     Returns decoded run-length MESSAGE.  The RLE encoded MESSAGE has to
     be in the form of a row-vector.  The message format (encoded RLE)
     is like repetition [factor, value]+.

     An example use of 'rledeco' is
          message = [1 5 2 4 3 1];
          rledeco (message)
              => [5 4 4 1 1 1]

     See also: rledeco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Returns decoded run-length MESSAGE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rleenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 427
 -- Function File: rleenco (MESSAGE)

     Returns run-length encoded MESSAGE.  The RLE form is built from
     MESSAGE.  The original MESSAGE has to be in the form of a
     row-vector.  The encoded MESSAGE format (encoded RLE) is like
     [repetition factor]+, values.

     An example use of 'rleenco' is
          message = [5 4 4 1 1 1]
          rleenco (message)
              => [1 5 2 4 3 1];

     See also: rleenco.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 35
Returns run-length encoded MESSAGE.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rsdecof


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 838
 -- Function File: rsdecof (IN, OUT)
 -- Function File: rsdecof (IN, OUT, T)

     Decodes an ASCII file using a Reed-Solomon coder.  The input file
     is defined by IN and the result is written to the output file OUT.
     The type of coding to use is determined by whether the input file
     is 7- or 8-bit.  If the input file is 7-bit, the default coding is
     [127,117].  while the default coding for an 8-bit file is a [255,
     235].  This allows for 5 or 10 error characters in 127 or 255
     symbols to be corrected respectively.  The number of errors that
     can be corrected can be overridden by the variable T.

     If the file is not an integer multiple of the message size (127 or
     255) in length, then the file is padded with the EOT (ASCII
     character 4) character before decoding.

     See also: rsencof.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Decodes an ASCII file using a Reed-Solomon coder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
rsencof


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1078
 -- Function File: rsencof (IN, OUT)
 -- Function File: rsencof (IN, OUT, T)
 -- Function File: rsencof (..., PAD)

     Encodes an ASCII file using a Reed-Solomon coder.  The input file
     is defined by IN and the result is written to the output file OUT.
     The type of coding to use is determined by whether the input file
     is 7- or 8-bit.  If the input file is 7-bit, the default coding is
     [127,117].  while the default coding for an 8-bit file is a [255,
     235].  This allows for 5 or 10 error characters in 127 or 255
     symbols to be corrected respectively.  The number of errors that
     can be corrected can be overridden by the variable T.

     If the file is not an integer multiple of the message size (127 or
     255) in length, then the file is padded with the EOT (ASCII
     character 4) characters before coding.  Whether these characters
     are written to the output is defined by the PAD variable.  Valid
     values for PAD are "pad" (the default) and "nopad", which write or
     not the padding respectively.

     See also: rsdecof.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 49
Encodes an ASCII file using a Reed-Solomon coder.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 9
rsgenpoly


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1636
 -- Function File: G = rsgenpoly (N, K)
 -- Function File: G = rsgenpoly (N, K, P)
 -- Function File: G = rsgenpoly (N, K, P, B, S)
 -- Function File: G = rsgenpoly (N, K, P, B)
 -- Function File: [G, T] = rsgenpoly (...)

     Creates a generator polynomial for a Reed-Solomon coding with
     message length of K and codelength of N.  N must be greater than K
     and their difference must be even.  The generator polynomial is
     returned on G as a polynomial over the Galois Field GF(2^M) where N
     is equal to '2^M-1'.  If M is not integer the next highest integer
     value is used and a generator for a shorten Reed-Solomon code is
     returned.

     The elements of G represent the coefficients of the polynomial in
     descending order.  If the length of G is lg, then the generator
     polynomial is given by

          G(0) * x^(lg-1) + G(1) * x^(lg-2) + ... + G(lg-1) * x + G(lg).

     If P is defined then it is used as the primitive polynomial of the
     Galois Field GF(2^M).  The default primitive polynomial will be
     used if P is equal to [].

     The variables B and S determine the form of the generator
     polynomial in the following manner.

          G = (X - A^(B*S)) * (X - A^((B+1)*S)) * ... * (X - A^((B+2*T-1)*S)).

     where T is '(N-K)/2', and A is the primitive element of the Galois
     Field.  Therefore B is the first consecutive root of the generator
     polynomial and S is the primitive element to generate the
     polynomial roots.

     If requested the variable T, which gives the error correction
     capability of the Reed-Solomon code.

     See also: gf, rsenc, rsdec.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Creates a generator polynomial for a Reed-Solomon coding with message
length of 



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
scatterplot


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1452
 -- Function File: scatterplot (X)
 -- Function File: scatterplot (X, N)
 -- Function File: scatterplot (X, N, OFF)
 -- Function File: scatterplot (X, N, OFF, STR)
 -- Function File: scatterplot (X, N, OFF, STR, H)
 -- Function File: H = scatterplot (...)

     Display the scatter plot of a signal.  The signal X can be either
     in one of three forms

     A real vector
          In this case the signal is assumed to be real and represented
          by the vector X.  The scatterplot is plotted along the x axis
          only.
     A complex vector
          In this case the in-phase and quadrature components of the
          signal are plotted separately on the x and y axes
          respectively.
     A matrix with two columns
          In this case the first column represents the in-phase and the
          second the quadrature components of a complex signal and are
          plotted on the x and y axes respectively.

     Each point of the scatter plot is assumed to be separated by N
     elements in the signal.  The first element of the signal to plot is
     determined by OFF.  By default N is 1 and OFF is 0.

     The string STR is a plot style string (example "r+"), and by
     default is the default gnuplot point style.

     The figure handle to use can be defined by H.  If H is not given,
     then the next available figure handle is used.  The figure handle
     used in returned on HOUT.

     See also: eyediagram.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 37
Display the scatter plot of a signal.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
shannonfanodeco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1031
 -- Function File: shannonfanodeco (HCODE, DICT)

     Returns the original signal that was Shannon-Fano encoded.  The
     signal was encoded using 'shannonfanoenco'.  This function uses a
     dict built from the 'shannonfanodict' and uses it to decode a
     signal list into a Shannon-Fano list.  Restrictions include hcode
     is expected to be a binary code; returned signal set that strictly
     belongs in the 'range [1,N]', with 'N = length (dict)'.  Also dict
     can only be from the 'shannonfanodict (...)' routine.  Whenever
     decoding fails, those signal values are indicated by -1, and we
     successively try to restart decoding from the next bit that hasn't
     failed in decoding, ad-infinitum.

     An example use of 'shannonfanodeco' is
          hd = shannonfanodict (1:4, [0.5 0.25 0.15 0.10]);
          hcode = shannonfanoenco (1:4, hd)
              => hcode = [0 1 0 1 1 0 1 1 1 0]
          shannonfanodeco (hcode, hd)
              => [1 2 3 4]

     See also: shannonfanoenco, shannonfanodict.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 58
Returns the original signal that was Shannon-Fano encoded.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
shannonfanodict


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 636
 -- Function File: shannonfanodict (SYMBOLS, SYMBOL_PROBABILITES)

     Returns the code dictionary for source using Shannon-Fano
     algorithm.  Dictionary is built from SYMBOL_PROBABILITIES using the
     Shannon-Fano scheme.  Output is a dictionary cell-array, which are
     codewords, and correspond to the order of input probability.

          cw = shannonfanodict (1:4, [0.5 0.25 0.15 0.1]);
          assert (redundancy (cw, [0.5 0.25 0.15 0.1]), 0.25841, 0.001)
          shannonfanodict (1:5, [0.35 0.17 0.17 0.16 0.15])
          shannonfanodict (1:8, [8 7 6 5 5 4 3 2] / 40)

     See also: shannonfanoenc, shannonfanodec.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 68
Returns the code dictionary for source using Shannon-Fano algorithm.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 15
shannonfanoenco


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 642
 -- Function File: shannonfanoenco (HCODE, DICT)

     Returns the Shannon-Fano encoded signal using DICT.  This function
     uses a DICT built from the 'shannonfanodict' and uses it to encode
     a signal list into a Shannon-Fano code.  Restrictions include a
     signal set that strictly belongs in the 'range [1,N]' with 'N =
     length (dict)'.  Also dict can only be from the 'shannonfanodict'
     routine.  An example use of 'shannonfanoenco' is

          hd = shannonfanodict (1:4, [0.5 0.25 0.15 0.10]);
          shannonfanoenco (1:4, hd)
              => [0 1 0 1 1 0 1 1 1 0]

     See also: shannonfanodeco, shannonfanodict.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 51
Returns the Shannon-Fano encoded signal using DICT.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 6
symerr


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1572
 -- Function File: [NUM, RATE] = symerr (A, B)
 -- Function File: [NUM, RATE] = symerr (..., FLAG)
 -- Function File: [NUM, RATE IND] = symerr (...)

     Compares two matrices and returns the number of symbol errors and
     the symbol error rate.  The variables A and B can be either:

     Both matrices
          In this case both matrices must be the same size and then by
          default the return values NUM and RATE are the overall number
          of symbol errors and the overall symbol error rate.
     One column vector
          In this case the column vector is used for symbol error
          comparison column-wise with the matrix.  The returned values
          NUM and RATE are then row vectors containing the number of
          symbol errors and the symbol error rate for each of the
          column-wise comparisons.  The number of rows in the matrix
          must be the same as the length of the column vector
     One row vector
          In this case the row vector is used for symbol error
          comparison row-wise with the matrix.  The returned values NUM
          and RATE are then column vectors containing the number of
          symbol errors and the symbol error rate for each of the
          row-wise comparisons.  The number of columns in the matrix
          must be the same as the length of the row vector

     This behavior can be overridden with the variable FLAG.  FLAG can
     take the value "column-wise", "row-wise" or "overall".  A
     column-wise comparison is not possible with a row vector and
     visa-versa.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Compares two matrices and returns the number of symbol errors and the
symbol err



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 11
systematize


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 741
 -- Function File: systematize (G)

     Given G, extract P parity check matrix.  Assume row-operations in
     GF(2).  G is of size KxN, when decomposed through row-operations
     into a I of size KxK identity matrix, and a parity check matrix P
     of size Kx(N-K).

     Most arbitrary code with a given generator matrix G, can be
     converted into its systematic form using this function.

     This function returns 2 values, first is default being GX the
     systematic version of the G matrix, and then the parity check
     matrix P.

          g = [1 1 1 1; 1 1 0 1; 1 0 0 1];
          [gx, p] = systematize (g);
              => gx = [1 0 0 1; 0 1 0 0; 0 0 1 0];
              => p = [1 0 0];

     See also: bchpoly, biterr.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 39
Given G, extract P parity check matrix.



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 7
vec2mat


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 374
 -- Function File: M = vec2mat (V, C)
 -- Function File: M = vec2mat (V, C, D)
 -- Function File: [M, ADD] = vec2mat (...)

     Converts the vector V into a C column matrix with row priority
     arrangement and with the final column padded with the value D to
     the correct length.  By default D is 0.  The amount of padding
     added to the matrix is returned in ADD.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 80
Converts the vector V into a C column matrix with row priority
arrangement and w



# name: <cell-element>
# type: sq_string
# elements: 1
# length: 3
wgn


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 1024
 -- Function File: Y = wgn (M, N, P)
 -- Function File: Y = wgn (M, N, P, IMP)
 -- Function File: Y = wgn (M, N, P, IMP, SEED)
 -- Function File: Y = wgn (..., TYPE)
 -- Function File: Y = wgn (..., OUTPUT)

     Returns a M-by-N matrix Y of white Gaussian noise.  P specifies the
     power of the output noise, which is assumed to be referenced to an
     impedance of 1 Ohm, unless IMP explicitly defines the impedance.

     If SEED is defined then the randn function is seeded with this
     value.

     The arguments TYPE and OUTPUT must follow the above numerical
     arguments, but can be specified in any order.  TYPE specifies the
     units of P, and can be "dB", "dBW", "dBm" or "linear".  "dB" is in
     fact the same as "dBW" and is keep as a misnomer of Matlab.  The
     units of "linear" are in Watts.

     The OUTPUT variable should be either "real" or "complex".  If the
     output is complex then the power P is divided equally between the
     real and imaginary parts.

     See also: randn, awgn.


# name: <cell-element>
# type: sq_string
# elements: 1
# length: 50
Returns a M-by-N matrix Y of white Gaussian noise.