/usr/share/octave/packages/communications-1.2.1/rsgenpoly.m is in octave-communications-common 1.2.1-1build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 | ## Copyright (C) 2003 David Bateman
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p}, @var{b}, @var{s})
## @deftypefnx {Function File} {@var{g} =} rsgenpoly (@var{n}, @var{k}, @var{p}, @var{b})
## @deftypefnx {Function File} {[@var{g}, @var{t}] =} rsgenpoly (@dots{})
##
## Creates a generator polynomial for a Reed-Solomon coding with message
## length of @var{k} and codelength of @var{n}. @var{n} must be greater
## than @var{k} and their difference must be even. The generator polynomial
## is returned on @var{g} as a polynomial over the Galois Field GF(2^@var{m})
## where @var{n} is equal to @code{2^@var{m}-1}. If @var{m} is not integer
## the next highest integer value is used and a generator for a shorten
## Reed-Solomon code is returned.
##
## The elements of @var{g} represent the coefficients of the polynomial in
## descending order. If the length of @var{g} is lg, then the generator
## polynomial is given by
## @tex
## $$
## g_0 x^{lg-1} + g_1 x^{lg-2} + \cdots + g_{lg-1} x + g_lg.
## $$
## @end tex
## @ifnottex
##
## @example
## @var{g}(0) * x^(lg-1) + @var{g}(1) * x^(lg-2) + ... + @var{g}(lg-1) * x + @var{g}(lg).
## @end example
## @end ifnottex
##
## If @var{p} is defined then it is used as the primitive polynomial of the
## Galois Field GF(2^@var{m}). The default primitive polynomial will be used
## if @var{p} is equal to [].
##
## The variables @var{b} and @var{s} determine the form of the generator
## polynomial in the following manner.
## @tex
## $$
## g = (x - A^{bs}) (x - A^{(b+1)s}) \cdots (x - A ^{(b+2t-1)s}).
## $$
## @end tex
## @ifnottex
##
## @example
## @var{g} = (@var{x} - A^(@var{b}*@var{s})) * (@var{x} - A^((@var{b}+1)*@var{s})) * ... * (@var{x} - A^((@var{b}+2*@var{t}-1)*@var{s})).
## @end example
## @end ifnottex
##
## where @var{t} is @code{(@var{n}-@var{k})/2}, and A is the primitive element
## of the Galois Field. Therefore @var{b} is the first consecutive root of the
## generator polynomial and @var{s} is the primitive element to generate the
## polynomial roots.
##
## If requested the variable @var{t}, which gives the error correction
## capability of the Reed-Solomon code.
## @seealso{gf, rsenc, rsdec}
## @end deftypefn
function [g, t] = rsgenpoly (n, k, _prim, _b, _s)
if (nargin < 2 || nargin > 5)
print_usage ();
endif
if (! (isscalar (n) && n == fix (n) && n > 2))
error ("rsgenpoly: N must be an integer greater than 2");
endif
if (! (isscalar (k) && k == fix (k) && k > 0))
error ("rsgenpoly: K must be a non-negative integer");
endif
if ((n-k)/2 != fix ((n-k)/2))
error ("rsgenpoly: N-K must be an even integer");
endif
m = ceil (log2 (n+1));
## Adjust n and k if n not equal to 2^m-1
dif = 2^m - 1 - n;
n = n + dif;
k = k + dif;
prim = 0;
if (nargin > 2)
if (isempty (_prim))
prim = 0;
else
prim = _prim;
endif
endif
if (! (isscalar (prim) && prim == fix (prim) && prim >= 0))
error ("rsgenpoly: P must be an integer representing a primitive polynomial");
endif
if (prim != 0)
if (!isprimitive (prim))
error ("rsgenpoly: P must be an integer representing a primitive polynomial");
endif
if (prim < 2^m || prim > 2^(m+1))
error ("rsgenpoly: P must be a primitive polynomial with order 2^M");
endif
endif
b = 1;
if (nargin > 3)
b = _b;
endif
if (! (isscalar (b) && b == fix (b) && b >= 0))
error ("rsgenpoly: B must be a non-negative integer");
endif
s = 1;
if (nargin > 4)
s = _s;
endif
if (! (isscalar (s) && s == fix (s) && s >= 0))
error ("rsgenpoly: S must be a non-negative integer");
endif
alph = gf (2, m, prim);
t = (n - k) / 2;
g = gf (1, m, prim);
for i = 1:2*t
g = conv (g, gf ([1, alph^((b+i-1)*s)], m, prim));
endfor
endfunction
%% Test input validation
%!error rsgenpoly ()
%!error rsgenpoly (1)
%!error rsgenpoly (1, 2, 3, 4, 5, 6)
%!error rsgenpoly (1, 2)
%!error rsgenpoly (2, 0)
%!error rsgenpoly (4, 3)
|