/usr/share/octave/packages/statistics-1.2.4/gevlike.m is in octave-statistics 1.2.4-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 | ## Copyright (C) 2012 Nir Krakauer <nkrakauer@ccny.cuny.edu>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.
## -*- texinfo -*-
## @deftypefn {Function File} {@var{nlogL}, @var{Grad}, @var{ACOV} =} gevlike (@var{params}, @var{data})
## Compute the negative log-likelihood of data under the generalized extreme value (GEV) distribution with given parameter values.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{params} is the 3-parameter vector [@var{k}, @var{sigma}, @var{mu}], where @var{k} is the shape parameter of the GEV distribution, @var{sigma} is the scale parameter of the GEV distribution, and @var{mu} is the location parameter of the GEV distribution.
## @item
## @var{data} is the vector of given values.
##
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{nlogL} is the negative log-likelihood.
## @item
## @var{Grad} is the 3 by 1 gradient vector (first derivative of the negative log likelihood with respect to the parameter values)
## @item
## @var{ACOV} is the 3 by 3 Fisher information matrix (second derivative of the negative log likelihood with respect to the parameter values)
##
## @end itemize
##
## @subheading Examples
##
## @example
## @group
## x = -5:-1;
## k = -0.2;
## sigma = 0.3;
## mu = 0.5;
## [L, ~, C] = gevlike ([k sigma mu], x);
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Rolf-Dieter Reiss and Michael Thomas. @cite{Statistical Analysis of Extreme Values with Applications to Insurance, Finance, Hydrology and Other Fields}. Chapter 1, pages 16-17, Springer, 2007.
##
## @end enumerate
## @seealso{gevcdf, gevfit, gevinv, gevpdf, gevrnd, gevstat}
## @end deftypefn
## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
## Description: Negative log-likelihood for the generalized extreme value distribution
function [nlogL, Grad, ACOV] = gevlike (params, data)
# Check arguments
if (nargin != 2)
print_usage;
endif
k = params(1);
sigma = params(2);
mu = params(3);
#calculate negative log likelihood
[nll, k_terms] = gevnll (data, k, sigma, mu);
nlogL = sum(nll(:));
#optionally calculate the first and second derivatives of the negative log likelihood with respect to parameters
if nargout > 1
[Grad, kk_terms] = gevgrad (data, k, sigma, mu, k_terms);
if nargout > 2
ACOV = gevfim (data, k, sigma, mu, k_terms, kk_terms);
endif
endif
endfunction
function [nlogL, k_terms] = gevnll (x, k, sigma, mu)
#internal function to calculate negative log likelihood for gevlike
#no input checking done
k_terms = [];
a = (x - mu) ./ sigma;
if all(k == 0)
nlogL = exp(-a) + a + log(sigma);
else
aa = k .* a;
if min(abs(aa)) < 1E-3 && max(abs(aa)) < 0.5 #use a series expansion to find the log likelihood more accurately when k is small
k_terms = 1; sgn = 1; i = 0;
while 1
sgn = -sgn; i++;
newterm = (sgn / (i + 1)) * (aa .^ i);
k_terms = k_terms + newterm;
if max(abs(newterm)) <= eps
break
endif
endwhile
nlogL = exp(-a .* k_terms) + a .* (k + 1) .* k_terms + log(sigma);
else
b = 1 + aa;
nlogL = b .^ (-1 ./ k) + (1 + 1 ./ k) .* log(b) + log(sigma);
nlogL(b <= 0) = Inf;
endif
endif
endfunction
function [G, kk_terms] = gevgrad (x, k, sigma, mu, k_terms)
#calculate the gradient of the negative log likelihood of data x with respect to the parameters of the generalized extreme value distribution for gevlike
#no input checking done
kk_terms = [];
G = ones(3, 1);
if k == 0 ##use the expressions for first derivatives that are the limits as k --> 0
a = (x - mu) ./ sigma;
f = exp(-a) - 1;
#k
#g = -(2 * x .* (mu .* (1 - f) - sigma .* f) + 2 .* sigma .* mu .* f + (x.^2 + mu.^2).*(f - 1)) ./ (2 * f .* sigma .^ 2);
g = a .* (1 + a .* f / 2);
G(1) = sum(g(:));
#sigma
g = (a .* f + 1) ./ sigma;
G(2) = sum(g(:));
#mu
g = f ./ sigma;
G(3) = sum(g(:));
return
endif
a = (x - mu) ./ sigma;
b = 1 + k .* a;
if any (b <= 0)
G(:) = 0; #negative log likelihood is locally infinite
return
endif
#k
c = log(b);
d = 1 ./ k + 1;
if nargin > 4 && ~isempty(k_terms) #use a series expansion to find the gradient more accurately when k is small
aa = k .* a;
f = exp(-a .* k_terms);
kk_terms = 0.5; sgn = 1; i = 0;
while 1
sgn = -sgn; i++;
newterm = (sgn * (i + 1) / (i + 2)) * (aa .^ i);
kk_terms = kk_terms + newterm;
if max(abs(newterm)) <= eps
break
endif
endwhile
g = a .* ((a .* kk_terms) .* (f - 1 - k) + k_terms);
else
g = (c ./ k - a ./ b) ./ (k .* b .^ (1/k)) - c ./ (k .^ 2) + a .* d ./ b;
endif
%keyboard
G(1) = sum(g(:));
#sigma
if nargin > 4 && ~isempty(k_terms) #use a series expansion to find the gradient more accurately when k is small
g = (1 - a .* (a .* k .* kk_terms - k_terms) .* (f - k - 1)) ./ sigma;
else
#g = (a .* b .^ (-d) - d .* k .* a ./ b + 1) ./ sigma;
g = (a .* b .^ (-d) - (k + 1) .* a ./ b + 1) ./ sigma;
endif
G(2) = sum(g(:));
#mu
if nargin > 4 && ~isempty(k_terms) #use a series expansion to find the gradient more accurately when k is small
g = -(a .* k .* kk_terms - k_terms) .* (f - k - 1) ./ sigma;
else
#g = (b .^ (-d) - d .* k ./ b) ./ sigma;
g = (b .^ (-d) - (k + 1) ./ b) ./ sigma;
end
G(3) = sum(g(:));
endfunction
function ACOV = gevfim (x, k, sigma, mu, k_terms, kk_terms)
#internal function to calculate the Fisher information matrix for gevlike
#no input checking done
#find the various second derivatives (used Maxima to help find the expressions)
ACOV = ones(3);
if k == 0 ##use the expressions for second derivatives that are the limits as k --> 0
#k, k
a = (x - mu) ./ sigma;
f = exp(-a);
#der = (x .* (24 * mu .^ 2 .* sigma .* (f - 1) + 24 * mu .* sigma .^ 2 .* f - 12 * mu .^ 3) + x .^ 3 .* (8 * sigma .* (f - 1) - 12*mu) + x .^ 2 .* (-12 * sigma .^ 2 .* f + 24 * mu .* sigma .* (1 - f) + 18 * mu .^ 2) - 12 * mu .^ 2 .* sigma .^ 2 .* f + 8 * mu .^ 3 .* sigma .* (1 - f) + 3 * (x .^ 4 + mu .^ 4)) ./ (12 .* f .* sigma .^ 4);
der = (a .^ 2) .* (a .* (a/4 - 2/3) .* f + 2/3 * a - 1);
ACOV(1, 1) = sum(der(:));
#sigma, sigma
der = (sigma .^ -2) .* (a .* ((a - 2) .* f + 2) - 1);
ACOV(2, 2) = sum(der(:));
#mu, mu
der = (sigma .^ -2) .* f;
ACOV(3, 3) = sum(der(:));
#k, sigma
#der = (x .^2 .* (2*sigma .* (f - 1) - 3*mu) + x .* (-2 * sigma .^ 2 .* f + 4 * mu .* sigma .* (1 - f) + 3 .* mu .^ 2) + 2 * mu .^ 2 .* sigma .* (f - 1) + 2 * mu * sigma .^ 2 * f + x .^ 3 - mu .^ 3) ./ (2 .* f .* sigma .^ 4);
der = (-a ./ sigma) .* (a .* (1 - a/2) .* f - a + 1);
ACOV(1, 2) = ACOV(2, 1) = sum(der(:));
#k, mu
#der = (x .* (2*sigma .* (f - 1) - 2*mu) - 2 * f .* sigma .^ 2 + 2 .* mu .* sigma .* (1 - f) + x .^ 2 + mu .^ 2)./ (2 .* f .* sigma .^ 3);
der = (-1 ./ sigma) .* (a .* (1 - a/2) .* f - a + 1);
ACOV(1, 3) = ACOV(3, 1) = sum(der(:));
#sigma, mu
der = (1 + (a - 1) .* f) ./ (sigma .^ 2);
ACOV(2, 3) = ACOV(3, 2) = sum(der(:));
return
endif
#general case
z = 1 + k .* (x - mu) ./ sigma;
#k, k
a = (x - mu) ./ sigma;
b = k .* a + 1;
c = log(b);
d = 1 ./ k + 1;
if nargin > 5 && ~isempty(kk_terms) #use a series expansion to find the derivatives more accurately when k is small
aa = k .* a;
f = exp(-a .* k_terms);
kkk_terms = 2/3; sgn = 1; i = 0;
while 1
sgn = -sgn; i++;
newterm = (sgn * (i + 1) * (i + 2) / (i + 3)) * (aa .^ i);
kkk_terms = kkk_terms + newterm;
if max(abs(newterm)) <= eps
break
endif
endwhile
der = (a .^ 2) .* (a .* (a .* kk_terms .^ 2 - kkk_terms) .* f + a .* (1 + k) .* kkk_terms - 2 * kk_terms);
else
der = ((((c ./ k.^2) - (a ./ (k .* b))) .^ 2) ./ (b .^ (1 ./ k))) + ...
((-2*c ./ k.^3) + (2*a ./ (k.^2 .* b)) + ((a ./ b) .^ 2 ./ k)) ./ (b .^ (1 ./ k)) + ...
2*c ./ k.^3 - ...
(2*a ./ (k.^2 .* b)) - (d .* (a ./ b) .^ 2);
endif
der(z <= 0) = 0; %no probability mass in this region
ACOV(1, 1) = sum(der(:));
#sigma, sigma
if nargin > 5 && ~isempty(kk_terms) #use a series expansion to find the derivatives more accurately when k is small
der = ((-2*a .* k_terms + 4 * a .^ 2 .* k .* kk_terms - a .^ 3 .* (k .^ 2) .* kkk_terms) .* (f - k - 1) + f .* ((a .* (k_terms - a .* k .* kk_terms)) .^ 2) - 1) ./ (sigma .^ 2);
else
der = (sigma .^ -2) .* (...
-2*a .* b .^ (-d) + ...
d .* k .* a .^ 2 .* (b .^ (-d-1)) + ...
2 .* d .* k .* a ./ b - ...
d .* (k .* a ./ b) .^ 2 - 1);
end
der(z <= 0) = 0; %no probability mass in this region
ACOV(2, 2) = sum(der(:));
#mu, mu
if nargin > 5 && ~isempty(kk_terms) #use a series expansion to find the derivatives involving k more accurately when k is small
der = (f .* (a .* k .* kk_terms - k_terms) .^ 2 - a .* k .^ 2 .* kkk_terms .* (f - k - 1)) ./ (sigma .^ 2);
else
der = (d .* (sigma .^ -2)) .* (...
k .* (b .^ (-d-1)) - ...
(k ./ b) .^ 2);
endif
der(z <= 0) = 0; %no probability mass in this region
ACOV(3, 3) = sum(der(:));
#k, mu
if nargin > 5 && ~isempty(kk_terms) #use a series expansion to find the derivatives involving k more accurately when k is small
der = 2 * a .* kk_terms .* (f - 1 - k) - a .^ 2 .* k_terms .* kk_terms .* f + k_terms; #k, a second derivative
der = -der ./ sigma;
else
der = ( (b .^ (-d)) .* (c ./ k - a ./ b) ./ k - ...
a .* (b .^ (-d-1)) + ...
((1 ./ k) - d) ./ b +
a .* k .* d ./ (b .^ 2)) ./ sigma;
endif
der(z <= 0) = 0; %no probability mass in this region
ACOV(1, 3) = ACOV(3, 1) = sum(der(:));
#k, sigma
der = a .* der;
der(z <= 0) = 0; %no probability mass in this region
ACOV(1, 2) = ACOV(2, 1) = sum(der(:));
#sigma, mu
if nargin > 5 && ~isempty(kk_terms) #use a series expansion to find the derivatives involving k more accurately when k is small
der = ((-k_terms + 3 * a .* k .* kk_terms - (a .* k) .^ 2 .* kkk_terms) .* (f - k - 1) + a .* (k_terms - a .* k .* kk_terms) .^ 2 .* f) ./ (sigma .^ 2);
else
der = ( -(b .^ (-d)) + ...
a .* k .* d .* (b .^ (-d-1)) + ...
(d .* k ./ b) - a .* (k./b).^2 .* d) ./ (sigma .^ 2);
end
der(z <= 0) = 0; %no probability mass in this region
ACOV(2, 3) = ACOV(3, 2) = sum(der(:));
endfunction
%!test
%! x = 1;
%! k = 0.2;
%! sigma = 0.3;
%! mu = 0.5;
%! [L, D, C] = gevlike ([k sigma mu], x);
%! expected_L = 0.75942;
%! expected_D = [0.53150; -0.67790; -2.40674];
%! expected_C = [-0.12547 1.77884 1.06731; 1.77884 16.40761 8.48877; 1.06731 8.48877 0.27979];
%! assert (L, expected_L, 0.001);
%! assert (D, expected_D, 0.001);
%! assert (C, expected_C, 0.001);
%!test
%! x = 1;
%! k = 0;
%! sigma = 0.3;
%! mu = 0.5;
%! [L, D, C] = gevlike ([k sigma mu], x);
%! expected_L = 0.65157;
%! expected_D = [0.54011; -1.17291; -2.70375];
%! expected_C = [0.090036 3.41229 2.047337; 3.412229 24.760027 12.510190; 2.047337 12.510190 2.098618];
%! assert (L, expected_L, 0.001);
%! assert (D, expected_D, 0.001);
%! assert (C, expected_C, 0.001);
%!test
%! x = -5:-1;
%! k = -0.2;
%! sigma = 0.3;
%! mu = 0.5;
%! [L, D, C] = gevlike ([k sigma mu], x);
%! expected_L = 3786.4;
%! expected_D = [6.4511e+04; -4.8194e+04; 3.0633e+03];
%! expected_C = -[-1.4937e+06 1.0083e+06 -6.1837e+04; 1.0083e+06 -8.1138e+05 4.0917e+04; -6.1837e+04 4.0917e+04 -2.0422e+03];
%! assert (L, expected_L, -0.001);
%! assert (D, expected_D, -0.001);
%! assert (C, expected_C, -0.001);
|