This file is indexed.

/usr/share/octave/packages/statistics-1.2.4/hmmgenerate.m is in octave-statistics 1.2.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
## Copyright (C) 2006, 2007 Arno Onken <asnelt@asnelt.org>
##
## This program is free software; you can redistribute it and/or modify it under
## the terms of the GNU General Public License as published by the Free Software
## Foundation; either version 3 of the License, or (at your option) any later
## version.
##
## This program is distributed in the hope that it will be useful, but WITHOUT
## ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
## FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more
## details.
##
## You should have received a copy of the GNU General Public License along with
## this program; if not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn {Function File} {[@var{sequence}, @var{states}] =} hmmgenerate (@var{len}, @var{transprob}, @var{outprob})
## @deftypefnx {Function File} {} hmmgenerate (@dots{}, 'symbols', @var{symbols})
## @deftypefnx {Function File} {} hmmgenerate (@dots{}, 'statenames', @var{statenames})
## Generate an output sequence and hidden states of a hidden Markov model.
## The model starts in state @code{1} at step @code{0} but will not include
## step @code{0} in the generated states and sequence.
##
## @subheading Arguments
##
## @itemize @bullet
## @item
## @var{len} is the number of steps to generate. @var{sequence} and
## @var{states} will have @var{len} entries each.
##
## @item
## @var{transprob} is the matrix of transition probabilities of the states.
## @code{transprob(i, j)} is the probability of a transition to state
## @code{j} given state @code{i}.
##
## @item
## @var{outprob} is the matrix of output probabilities.
## @code{outprob(i, j)} is the probability of generating output @code{j}
## given state @code{i}.
## @end itemize
##
## @subheading Return values
##
## @itemize @bullet
## @item
## @var{sequence} is a vector of length @var{len} of the generated
## outputs. The outputs are integers ranging from @code{1} to
## @code{columns (outprob)}.
##
## @item
## @var{states} is a vector of length @var{len} of the generated hidden
## states. The states are integers ranging from @code{1} to
## @code{columns (transprob)}.
## @end itemize
##
## If @code{'symbols'} is specified, then the elements of @var{symbols} are
## used for the output sequence instead of integers ranging from @code{1} to
## @code{columns (outprob)}. @var{symbols} can be a cell array.
##
## If @code{'statenames'} is specified, then the elements of
## @var{statenames} are used for the states instead of integers ranging from
## @code{1} to @code{columns (transprob)}. @var{statenames} can be a cell
## array.
##
## @subheading Examples
##
## @example
## @group
## transprob = [0.8, 0.2; 0.4, 0.6];
## outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
## [sequence, states] = hmmgenerate (25, transprob, outprob)
## @end group
##
## @group
## symbols = @{'A', 'B', 'C'@};
## statenames = @{'One', 'Two'@};
## [sequence, states] = hmmgenerate (25, transprob, outprob,
##                      'symbols', symbols, 'statenames', statenames)
## @end group
## @end example
##
## @subheading References
##
## @enumerate
## @item
## Wendy L. Martinez and Angel R. Martinez. @cite{Computational Statistics
## Handbook with MATLAB}. Appendix E, pages 547-557, Chapman & Hall/CRC,
## 2001.
##
## @item
## Lawrence R. Rabiner. A Tutorial on Hidden Markov Models and Selected
## Applications in Speech Recognition. @cite{Proceedings of the IEEE},
## 77(2), pages 257-286, February 1989.
## @end enumerate
## @end deftypefn

## Author: Arno Onken <asnelt@asnelt.org>
## Description: Output sequence and hidden states of a hidden Markov model

function [sequence, states] = hmmgenerate (len, transprob, outprob, varargin)

  # Check arguments
  if (nargin < 3 || mod (length (varargin), 2) != 0)
    print_usage ();
  endif

  if (! isscalar (len) || len < 0 || round (len) != len)
    error ("hmmgenerate: len must be a non-negative scalar integer")
  endif

  if (! ismatrix (transprob))
    error ("hmmgenerate: transprob must be a non-empty numeric matrix");
  endif
  if (! ismatrix (outprob))
    error ("hmmgenerate: outprob must be a non-empty numeric matrix");
  endif

  # nstate is the number of states of the hidden Markov model
  nstate = rows (transprob);
  # noutput is the number of different outputs that the hidden Markov model
  # can generate
  noutput = columns (outprob);

  # Check whether transprob and outprob are feasible for a hidden Markov
  # model
  if (columns (transprob) != nstate)
    error ("hmmgenerate: transprob must be a square matrix");
  endif
  if (rows (outprob) != nstate)
    error ("hmmgenerate: outprob must have the same number of rows as transprob");
  endif

  # Flag for symbols
  usesym = false;
  # Flag for statenames
  usesn = false;

  # Process varargin
  for i = 1:2:length (varargin)
    # There must be an identifier: 'symbols' or 'statenames'
    if (! ischar (varargin{i}))
      print_usage ();
    endif
    # Upper case is also fine
    lowerarg = lower (varargin{i});
    if (strcmp (lowerarg, 'symbols'))
      if (length (varargin{i + 1}) != noutput)
        error ("hmmgenerate: number of symbols does not match number of possible outputs");
      endif
      usesym = true;
      # Use the following argument as symbols
      symbols = varargin{i + 1};
    # The same for statenames
    elseif (strcmp (lowerarg, 'statenames'))
      if (length (varargin{i + 1}) != nstate)
        error ("hmmgenerate: number of statenames does not match number of states");
      endif
      usesn = true;
      # Use the following argument as statenames
      statenames = varargin{i + 1};
    else
      error ("hmmgenerate: expected 'symbols' or 'statenames' but found '%s'", varargin{i});
    endif
  endfor

  # Each row in transprob and outprob should contain probabilities
  # => scale so that the sum is 1
  # A zero row remains zero
  # - for transprob
  s = sum (transprob, 2);
  s(s == 0) = 1;
  transprob = transprob ./ repmat (s, 1, nstate);
  # - for outprob
  s = sum (outprob, 2);
  s(s == 0) = 1;
  outprob = outprob ./ repmat (s, 1, noutput);

  # Generate sequences of uniformly distributed random numbers between 0 and
  # 1
  # - for the state transitions
  transdraw = rand (1, len);
  # - for the outputs
  outdraw = rand (1, len);

  # Generate the return vectors
  # They remain unchanged if the according probability row of transprob
  # and outprob contain, respectively, only zeros
  sequence = ones (1, len);
  states = ones (1, len);

  if (len > 0)
    # Calculate cumulated probabilities backwards for easy comparison with
    # the generated random numbers
    # Cumulated probability in first column must always be 1
    # We might have a zero row
    # - for transprob
    transprob(:, end:-1:1) = cumsum (transprob(:, end:-1:1), 2);
    transprob(:, 1) = 1;
    # - for outprob
    outprob(:, end:-1:1) = cumsum (outprob(:, end:-1:1), 2);
    outprob(:, 1) = 1;

    # cstate is the current state
    # Start in state 1 but do not include it in the states vector
    cstate = 1;
    for i = 1:len
      # Compare the randon number i of transdraw to the cumulated
      # probability of the state transition and set the transition
      # accordingly
      states(i) = sum (transdraw(i) <= transprob(cstate, :));
      cstate = states(i);
    endfor

    # Compare the random numbers of outdraw to the cumulated probabilities
    # of the outputs and set the sequence vector accordingly
    sequence = sum (repmat (outdraw, noutput, 1) <= outprob(states, :)', 1);

    # Transform default matrices into symbols/statenames if requested
    if (usesym)
      sequence = reshape (symbols(sequence), 1, len);
    endif
    if (usesn)
      states = reshape (statenames(states), 1, len);
    endif
  endif

endfunction

%!test
%! len = 25;
%! transprob = [0.8, 0.2; 0.4, 0.6];
%! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
%! [sequence, states] = hmmgenerate (len, transprob, outprob);
%! assert (length (sequence), len);
%! assert (length (states), len);
%! assert (min (sequence) >= 1);
%! assert (max (sequence) <= columns (outprob));
%! assert (min (states) >= 1);
%! assert (max (states) <= rows (transprob));

%!test
%! len = 25;
%! transprob = [0.8, 0.2; 0.4, 0.6];
%! outprob = [0.2, 0.4, 0.4; 0.7, 0.2, 0.1];
%! symbols = {'A', 'B', 'C'};
%! statenames = {'One', 'Two'};
%! [sequence, states] = hmmgenerate (len, transprob, outprob, 'symbols', symbols, 'statenames', statenames);
%! assert (length (sequence), len);
%! assert (length (states), len);
%! assert (strcmp (sequence, 'A') + strcmp (sequence, 'B') + strcmp (sequence, 'C') == ones (1, len));
%! assert (strcmp (states, 'One') + strcmp (states, 'Two') == ones (1, len));