This file is indexed.

/usr/share/octave/packages/statistics-1.2.4/iwishrnd.m is in octave-statistics 1.2.4-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

 1
 2
 3
 4
 5
 6
 7
 8
 9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
## Copyright (C) 2013 Nir Krakauer <nkrakauer@ccny.cuny.edu>
##
## This program is free software; you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation; either version 3 of the License, or (at your option) any later version.
##
## Octave is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for more details.
##
## You should have received a copy of the GNU General Public License along with Octave; see the file COPYING.  If not, see <http://www.gnu.org/licenses/>.

## -*- texinfo -*-
## @deftypefn  {Function File} {} [@var{W}[, @var{DI}]] = iwishrnd (@var{Psi}, @var{df}[, @var{DI}][, @var{n}=1])
## Return a random matrix sampled from the inverse Wishart distribution with given parameters
##
## Inputs: the @var{p} x @var{p} positive definite matrix @var{Tau} and scalar degrees of freedom parameter @var{df} (and optionally the transposed Cholesky factor @var{DI} of @var{Sigma} = @code{inv(Tau)}).
## @var{df} can be non-integer as long as @var{df} > @var{d}
##
## Output: a random @var{p} x @var{p}  matrix @var{W} from the inverse Wishart(@var{Tau}, @var{df}) distribution. (@code{inv(W)} is from the Wishart(@code{inv(Tau)}, @var{df}) distribution.) If @var{n} > 1, then @var{W} is @var{p} x @var{p} x @var{n} and holds @var{n} such random matrices. (Optionally, the transposed Cholesky factor @var{DI} of @var{Sigma} is also returned.)
##
## Averaged across many samples, the mean of @var{W} should approach @var{Tau} / (@var{df} - @var{p} - 1).
##
## Reference: Yu-Cheng Ku and Peter Bloomfield (2010), Generating Random Wishart Matrices with Fractional Degrees of Freedom in OX, http://www.gwu.edu/~forcpgm/YuChengKu-030510final-WishartYu-ChengKu.pdf
## 
## @seealso{wishrnd, iwishpdf}
## @end deftypefn

## Author: Nir Krakauer <nkrakauer@ccny.cuny.edu>
## Description: Random matrices from the inverse Wishart distribution

function [W, DI] = iwishrnd(Tau, df, DI, n = 1)

if (nargin < 2)
  print_usage ();
endif

if nargin < 3 || isempty(DI)
  try
    D = chol(inv(Tau));
  catch
    error('Cholesky decomposition failed; Tau probably not positive definite')
  end_try_catch
  DI = D';
else  
  D = DI';  
endif

w = wishrnd([], df, D, n);

if n > 1
  p = size(D, 1);
  W = nan(p, p, n);
endif

for i = 1:n
  W(:, :, i) = inv(w(:, :, i));
endfor

endfunction



%!assert(size (iwishrnd (1,2,1)), [1, 1]);
%!assert(size (iwishrnd ([],2,1)), [1, 1]);
%!assert(size (iwishrnd ([3 1; 1 3], 2.00001, [], 1)), [2, 2]);
%!assert(size (iwishrnd (eye(2), 2, [], 3)), [2, 2, 3]);

%% Test input validation
%!error iwishrnd ()
%!error iwishrnd (1)
%!error iwishrnd ([-3 1; 1 3],1)
%!error iwishrnd ([1; 1],1)