/usr/bin/ompl_benchmark_statistics is in ompl-demos 1.0.0+ds2-1build1.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 | #!/usr/bin/env python
######################################################################
# Software License Agreement (BSD License)
#
# Copyright (c) 2010, Rice University
# All rights reserved.
#
# Redistribution and use in source and binary forms, with or without
# modification, are permitted provided that the following conditions
# are met:
#
# * Redistributions of source code must retain the above copyright
# notice, this list of conditions and the following disclaimer.
# * Redistributions in binary form must reproduce the above
# copyright notice, this list of conditions and the following
# disclaimer in the documentation and/or other materials provided
# with the distribution.
# * Neither the name of the Rice University nor the names of its
# contributors may be used to endorse or promote products derived
# from this software without specific prior written permission.
#
# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
# "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
# LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
# FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
# COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
# INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
# BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
# LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
# LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
# ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
# POSSIBILITY OF SUCH DAMAGE.
######################################################################
# Author: Mark Moll, Ioan Sucan, Luis G. Torres
from sys import argv, exit
from os.path import basename, splitext
import sqlite3
import datetime
import matplotlib
matplotlib.use('pdf')
from matplotlib import __version__ as matplotlibversion
from matplotlib.backends.backend_pdf import PdfPages
import matplotlib.pyplot as plt
import numpy as np
from math import floor
from optparse import OptionParser, OptionGroup
# Given a text line, split it into tokens (by space) and return the token
# at the desired index. Additionally, test that some expected tokens exist.
# Return None if they do not.
def readLogValue(filevar, desired_token_index, expected_tokens) :
start_pos = filevar.tell()
tokens = filevar.readline().split()
for token_index in expected_tokens:
if not tokens[token_index] == expected_tokens[token_index]:
# undo the read, if we failed to parse.
filevar.seek(start_pos)
return None
return tokens[desired_token_index]
def readOptionalLogValue(filevar, desired_token_index, expected_tokens = {}) :
return readLogValue(filevar, desired_token_index, expected_tokens)
def readRequiredLogValue(name, filevar, desired_token_index, expected_tokens = {}) :
result = readLogValue(filevar, desired_token_index, expected_tokens)
if result == None:
raise Exception("Unable to read " + name)
return result
def ensurePrefix(line, prefix):
if not line.startswith(prefix):
raise Exception("Expected prefix " + prefix + " was not found")
return line
def readOptionalMultilineValue(filevar):
start_pos = filevar.tell()
line = filevar.readline()
if not line.startswith("<<<|"):
filevar.seek(start_pos)
return None
value = ''
line = filevar.readline()
while not line.startswith('|>>>'):
value = value + line
line = filevar.readline()
if line == None:
raise Exception("Expected token |>>> missing")
return value
def readRequiredMultilineValue(filevar):
ensurePrefix(filevar.readline(), "<<<|")
value = ''
line = filevar.readline()
while not line.startswith('|>>>'):
value = value + line
line = filevar.readline()
if line == None:
raise Exception("Expected token |>>> missing")
return value
def readBenchmarkLog(dbname, filenames, moveitformat):
"""Parse benchmark log files and store the parsed data in a sqlite3 database."""
conn = sqlite3.connect(dbname)
c = conn.cursor()
c.execute('PRAGMA FOREIGN_KEYS = ON')
# create all tables if they don't already exist
c.executescript("""CREATE TABLE IF NOT EXISTS experiments
(id INTEGER PRIMARY KEY AUTOINCREMENT, name VARCHAR(512),
totaltime REAL, timelimit REAL, memorylimit REAL, runcount INTEGER,
version VARCHAR(128), hostname VARCHAR(1024), cpuinfo TEXT,
date DATETIME, seed INTEGER, setup TEXT);
CREATE TABLE IF NOT EXISTS plannerConfigs
(id INTEGER PRIMARY KEY AUTOINCREMENT,
name VARCHAR(512) NOT NULL, settings TEXT);
CREATE TABLE IF NOT EXISTS enums
(name VARCHAR(512), value INTEGER, description TEXT,
PRIMARY KEY (name, value));
CREATE TABLE IF NOT EXISTS runs
(id INTEGER PRIMARY KEY AUTOINCREMENT, experimentid INTEGER, plannerid INTEGER,
FOREIGN KEY (experimentid) REFERENCES experiments(id) ON DELETE CASCADE,
FOREIGN KEY (plannerid) REFERENCES plannerConfigs(id) ON DELETE CASCADE);
CREATE TABLE IF NOT EXISTS progress
(runid INTEGER, time REAL, PRIMARY KEY (runid, time),
FOREIGN KEY (runid) REFERENCES runs(id) ON DELETE CASCADE)""")
for filename in filenames:
print('Processing ' + filename)
logfile = open(filename,'r')
version = readOptionalLogValue(logfile, -1, {0 : "OMPL", 1 : "version"})
if version == None:
# set the version number to make Planner Arena happy
version = "0.0.0"
expname = readRequiredLogValue("experiment name", logfile, -1, {0 : "Experiment"})
hostname = readRequiredLogValue("hostname", logfile, -1, {0 : "Running"})
date = ' '.join(ensurePrefix(logfile.readline(), "Starting").split()[2:])
if moveitformat:
expsetup = readRequiredLogValue("goal name", logfile, -1, {0: "Goal", 1: "name"})
cpuinfo = None
rseed = 0
timelimit = float(readRequiredLogValue("time limit", logfile, 0, {-3 : "seconds", -2 : "per", -1 : "run"}))
memorylimit = 0
else:
expsetup = readRequiredMultilineValue(logfile)
cpuinfo = readOptionalMultilineValue(logfile)
rseed = int(readRequiredLogValue("random seed", logfile, 0, {-2 : "random", -1 : "seed"}))
timelimit = float(readRequiredLogValue("time limit", logfile, 0, {-3 : "seconds", -2 : "per", -1 : "run"}))
memorylimit = float(readRequiredLogValue("memory limit", logfile, 0, {-3 : "MB", -2 : "per", -1 : "run"}))
nrrunsOrNone = readOptionalLogValue(logfile, 0, {-3 : "runs", -2 : "per", -1 : "planner"})
nrruns = -1
if nrrunsOrNone != None:
nrruns = int(nrrunsOrNone)
totaltime = float(readRequiredLogValue("total time", logfile, 0, {-3 : "collect", -2 : "the", -1 : "data"}))
numEnums = 0
numEnumsOrNone = readOptionalLogValue(logfile, 0, {-2 : "enum"})
if numEnumsOrNone != None:
numEnums = int(numEnumsOrNone)
for i in range(numEnums):
enum = logfile.readline()[:-1].split('|')
c.execute('SELECT * FROM enums WHERE name IS "%s"' % enum[0])
if c.fetchone() == None:
for j in range(len(enum)-1):
c.execute('INSERT INTO enums VALUES (?,?,?)',
(enum[0],j,enum[j+1]))
c.execute('INSERT INTO experiments VALUES (?,?,?,?,?,?,?,?,?,?,?,?)',
(None, expname, totaltime, timelimit, memorylimit, nrruns,
version, hostname, cpuinfo, date, rseed, expsetup) )
experimentId = c.lastrowid
numPlanners = int(readRequiredLogValue("planner count", logfile, 0, {-1 : "planners"}))
for i in range(numPlanners):
plannerName = logfile.readline()[:-1]
print('Parsing data for ' + plannerName)
# read common data for planner
numCommon = int(logfile.readline().split()[0])
settings = ''
for j in range(numCommon):
settings = settings + logfile.readline() + ';'
# find planner id
c.execute('SELECT id FROM plannerConfigs WHERE (name=? AND settings=?)',
(plannerName, settings,))
p = c.fetchone()
if p==None:
c.execute('INSERT INTO plannerConfigs VALUES (?,?,?)',
(None, plannerName, settings,))
plannerId = c.lastrowid
else:
plannerId = p[0]
# get current column names
c.execute('PRAGMA table_info(runs)')
columnNames = [col[1] for col in c.fetchall()]
# read properties and add columns as necessary
numProperties = int(logfile.readline().split()[0])
propertyNames = ['experimentid', 'plannerid']
for j in range(numProperties):
field = logfile.readline().split()
propertyType = field[-1]
propertyName = '_'.join(field[:-1])
if propertyName not in columnNames:
c.execute('ALTER TABLE runs ADD %s %s' % (propertyName, propertyType))
propertyNames.append(propertyName)
# read measurements
insertFmtStr = 'INSERT INTO runs (' + ','.join(propertyNames) + \
') VALUES (' + ','.join('?'*len(propertyNames)) + ')'
numRuns = int(logfile.readline().split()[0])
runIds = []
for j in range(numRuns):
values = tuple([experimentId, plannerId] + \
[None if len(x) == 0 or x == 'nan' or x == 'inf' else x
for x in logfile.readline().split('; ')[:-1]])
c.execute(insertFmtStr, values)
# extract primary key of each run row so we can reference them
# in the planner progress data table if needed
runIds.append(c.lastrowid)
nextLine = logfile.readline().strip()
# read planner progress data if it's supplied
if nextLine != '.':
# get current column names
c.execute('PRAGMA table_info(progress)')
columnNames = [col[1] for col in c.fetchall()]
# read progress properties and add columns as necesary
numProgressProperties = int(nextLine.split()[0])
progressPropertyNames = ['runid']
for i in range(numProgressProperties):
field = logfile.readline().split()
progressPropertyType = field[-1]
progressPropertyName = "_".join(field[:-1])
if progressPropertyName not in columnNames:
c.execute('ALTER TABLE progress ADD %s %s' %
(progressPropertyName, progressPropertyType))
progressPropertyNames.append(progressPropertyName)
# read progress measurements
insertFmtStr = 'INSERT INTO progress (' + \
','.join(progressPropertyNames) + ') VALUES (' + \
','.join('?'*len(progressPropertyNames)) + ')'
numRuns = int(logfile.readline().split()[0])
for j in range(numRuns):
dataSeries = logfile.readline().split(';')[:-1]
for dataSample in dataSeries:
values = tuple([runIds[j]] + \
[None if len(x) == 0 or x == 'nan' or x == 'inf' else x
for x in dataSample.split(',')[:-1]])
try:
c.execute(insertFmtStr, values)
except sqlite3.IntegrityError:
print('Ignoring duplicate progress data. Consider increasing ompl::tools::Benchmark::Request::timeBetweenUpdates.')
pass
logfile.readline()
logfile.close()
conn.commit()
c.close()
def plotAttribute(cur, planners, attribute, typename):
"""Create a plot for a particular attribute. It will include data for
all planners that have data for this attribute."""
plt.clf()
ax = plt.gca()
labels = []
measurements = []
nanCounts = []
if typename == 'ENUM':
cur.execute('SELECT description FROM enums where name IS "%s"' % attribute)
descriptions = [ t[0] for t in cur.fetchall() ]
numValues = len(descriptions)
for planner in planners:
cur.execute('SELECT %s FROM runs WHERE plannerid = %s AND %s IS NOT NULL' \
% (attribute, planner[0], attribute))
measurement = [ t[0] for t in cur.fetchall() if t[0] != None ]
if len(measurement) > 0:
cur.execute('SELECT count(*) FROM runs WHERE plannerid = %s AND %s IS NULL' \
% (planner[0], attribute))
nanCounts.append(cur.fetchone()[0])
labels.append(planner[1])
if typename == 'ENUM':
scale = 100. / len(measurement)
measurements.append([measurement.count(i)*scale for i in range(numValues)])
else:
measurements.append(measurement)
if typename == 'ENUM':
width = .5
measurements = np.transpose(np.vstack(measurements))
colsum = np.sum(measurements, axis=1)
rows = np.where(colsum != 0)[0]
heights = np.zeros((1,measurements.shape[1]))
ind = range(measurements.shape[1])
legend_labels = []
for i in rows:
plt.bar(ind, measurements[i], width, bottom=heights[0],
color=matplotlib.cm.hot(int(floor(i*256/numValues))),
label=descriptions[i])
heights = heights + measurements[i]
xtickNames = plt.xticks([x+width/2. for x in ind], labels, rotation=30)
ax.set_ylabel(attribute.replace('_',' ') + ' (%)')
box = ax.get_position()
ax.set_position([box.x0, box.y0, box.width * 0.8, box.height])
props = matplotlib.font_manager.FontProperties()
props.set_size('small')
ax.legend(loc='center left', bbox_to_anchor=(1, 0.5), prop = props)
elif typename == 'BOOLEAN':
width = .5
measurementsPercentage = [sum(m) * 100. / len(m) for m in measurements]
ind = range(len(measurements))
plt.bar(ind, measurementsPercentage, width)
xtickNames = plt.xticks([x + width / 2. for x in ind], labels, rotation=30)
ax.set_ylabel(attribute.replace('_',' ') + ' (%)')
else:
if int(matplotlibversion.split('.')[0])<1:
plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5)
else:
plt.boxplot(measurements, notch=0, sym='k+', vert=1, whis=1.5, bootstrap=1000)
ax.set_ylabel(attribute.replace('_',' '))
xtickNames = plt.setp(ax,xticklabels=labels)
plt.setp(xtickNames, rotation=25)
ax.set_xlabel('Motion planning algorithm')
ax.yaxis.grid(True, linestyle='-', which='major', color='lightgrey', alpha=0.5)
if max(nanCounts)>0:
maxy = max([max(y) for y in measurements])
for i in range(len(labels)):
x = i+width/2 if typename=='BOOLEAN' else i+1
ax.text(x, .95*maxy, str(nanCounts[i]), horizontalalignment='center', size='small')
plt.show()
def plotProgressAttribute(cur, planners, attribute):
"""Plot data for a single planner progress attribute. Will create an
average time-plot with error bars of the attribute over all runs for
each planner."""
import numpy.ma as ma
plt.clf()
ax = plt.gca()
ax.set_xlabel('time (s)')
ax.set_ylabel(attribute.replace('_',' '))
plannerNames = []
for planner in planners:
cur.execute("""SELECT count(progress.%s) FROM progress INNER JOIN runs
ON progress.runid = runs.id AND runs.plannerid=%s
AND progress.%s IS NOT NULL""" \
% (attribute, planner[0], attribute))
if cur.fetchone()[0] > 0:
plannerNames.append(planner[1])
cur.execute("""SELECT DISTINCT progress.runid FROM progress INNER JOIN runs
WHERE progress.runid=runs.id AND runs.plannerid=?""", (planner[0],))
runids = [t[0] for t in cur.fetchall()]
timeTable = []
dataTable = []
for r in runids:
# Select data for given run
cur.execute('SELECT time, %s FROM progress WHERE runid = %s ORDER BY time' % (attribute,r))
(time, data) = zip(*(cur.fetchall()))
timeTable.append(time)
dataTable.append(data)
# It's conceivable that the sampling process may have
# generated more samples for one run than another; in this
# case, truncate all data series to length of shortest
# one.
fewestSamples = min(len(time[:]) for time in timeTable)
times = np.array(timeTable[0][:fewestSamples])
dataArrays = np.array([data[:fewestSamples] for data in dataTable])
filteredData = ma.masked_array(dataArrays, np.equal(dataArrays, None), dtype=float)
means = np.mean(filteredData, axis=0)
stddevs = np.std(filteredData, axis=0, ddof=1)
# plot average with error bars
plt.errorbar(times, means, yerr=2*stddevs, errorevery=max(1, len(times) // 20))
ax.legend(plannerNames)
plt.show()
def plotStatistics(dbname, fname):
"""Create a PDF file with box plots for all attributes."""
print("Generating plots...")
conn = sqlite3.connect(dbname)
c = conn.cursor()
c.execute('PRAGMA FOREIGN_KEYS = ON')
c.execute('SELECT id, name FROM plannerConfigs')
planners = [(t[0],t[1].replace('geometric_','').replace('control_',''))
for t in c.fetchall()]
c.execute('PRAGMA table_info(runs)')
colInfo = c.fetchall()[3:]
pp = PdfPages(fname)
for col in colInfo:
if col[2] == 'BOOLEAN' or col[2] == 'ENUM' or \
col[2] == 'INTEGER' or col[2] == 'REAL':
plotAttribute(c, planners, col[1], col[2])
pp.savefig(plt.gcf())
plt.clf()
c.execute('PRAGMA table_info(progress)')
colInfo = c.fetchall()[2:]
for col in colInfo:
plotProgressAttribute(c, planners, col[1])
pp.savefig(plt.gcf())
plt.clf()
pagey = 0.9
pagex = 0.06
c.execute("""SELECT id, name, timelimit, memorylimit FROM experiments""")
experiments = c.fetchall()
for experiment in experiments:
c.execute("""SELECT count(*) FROM runs WHERE runs.experimentid = %d
GROUP BY runs.plannerid""" % experiment[0])
numRuns = [run[0] for run in c.fetchall()]
numRuns = numRuns[0] if len(set(numRuns)) == 1 else ','.join(numRuns)
plt.figtext(pagex, pagey, 'Experiment "%s"' % experiment[1])
plt.figtext(pagex, pagey-0.05, 'Number of averaged runs: %d' % numRuns)
plt.figtext(pagex, pagey-0.10, "Time limit per run: %g seconds" % experiment[2])
plt.figtext(pagex, pagey-0.15, "Memory limit per run: %g MB" % experiment[3])
pagey -= 0.22
plt.show()
pp.savefig(plt.gcf())
pp.close()
def saveAsMysql(dbname, mysqldump):
# See http://stackoverflow.com/questions/1067060/perl-to-python
import re
print("Saving as MySQL dump file...")
conn = sqlite3.connect(dbname)
mysqldump = open(mysqldump,'w')
# make sure all tables are dropped in an order that keepd foreign keys valid
c = conn.cursor()
c.execute("SELECT name FROM sqlite_master WHERE type='table'")
table_names = [ str(t[0]) for t in c.fetchall() ]
c.close()
last = ['experiments', 'planner_configs']
for table in table_names:
if table.startswith("sqlite"):
continue
if not table in last:
mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table)
for table in last:
if table in table_names:
mysqldump.write("DROP TABLE IF EXISTS `%s`;\n" % table)
for line in conn.iterdump():
process = False
for nope in ('BEGIN TRANSACTION','COMMIT',
'sqlite_sequence','CREATE UNIQUE INDEX', 'CREATE VIEW'):
if nope in line: break
else:
process = True
if not process: continue
line = re.sub(r"[\n\r\t ]+", " ", line)
m = re.search('CREATE TABLE ([a-zA-Z0-9_]*)(.*)', line)
if m:
name, sub = m.groups()
sub = sub.replace('"','`')
line = '''CREATE TABLE IF NOT EXISTS %(name)s%(sub)s'''
line = line % dict(name=name, sub=sub)
# make sure we use an engine that supports foreign keys
line = line.rstrip("\n\t ;") + " ENGINE = InnoDB;\n"
else:
m = re.search('INSERT INTO "([a-zA-Z0-9_]*)"(.*)', line)
if m:
line = 'INSERT INTO %s%s\n' % m.groups()
line = line.replace('"', r'\"')
line = line.replace('"', "'")
line = re.sub(r"([^'])'t'(.)", "\\1THIS_IS_TRUE\\2", line)
line = line.replace('THIS_IS_TRUE', '1')
line = re.sub(r"([^'])'f'(.)", "\\1THIS_IS_FALSE\\2", line)
line = line.replace('THIS_IS_FALSE', '0')
line = line.replace('AUTOINCREMENT', 'AUTO_INCREMENT')
mysqldump.write(line)
mysqldump.close()
def computeViews(dbname, moveitformat):
conn = sqlite3.connect(dbname)
c = conn.cursor()
c.execute('PRAGMA FOREIGN_KEYS = ON')
c.execute('PRAGMA table_info(runs)')
if moveitformat:
s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, total_time
FROM plannerConfigs INNER JOIN experiments INNER JOIN runs
ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid"""
# kinodynamic paths cannot be simplified (or least not easily),
# so simplification_time may not exist as a database column
elif 'simplification_time' in [col[1] for col in c.fetchall()]:
s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time + simplification_time AS total_time
FROM plannerConfigs INNER JOIN experiments INNER JOIN runs
ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid"""
else:
s0 = """SELECT plannerid, plannerConfigs.name AS plannerName, experimentid, solved, time AS total_time
FROM plannerConfigs INNER JOIN experiments INNER JOIN runs
ON plannerConfigs.id=runs.plannerid AND experiments.id=runs.experimentid"""
s1 = """SELECT plannerid, plannerName, experimentid, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time
FROM (%s) GROUP BY plannerid, experimentid""" % s0
s2 = """SELECT plannerid, experimentid, MIN(avg_solved) AS avg_solved, avg_total_time
FROM (%s) GROUP BY plannerName, experimentid ORDER BY avg_solved DESC, avg_total_time ASC""" % s1
c.execute('DROP VIEW IF EXISTS bestPlannerConfigsPerExperiment')
c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigsPerExperiment AS %s' % s2)
s1 = """SELECT plannerid, plannerName, AVG(solved) AS avg_solved, AVG(total_time) AS avg_total_time
FROM (%s) GROUP BY plannerid""" % s0
s2 = """SELECT plannerid, MIN(avg_solved) AS avg_solved, avg_total_time
FROM (%s) GROUP BY plannerName ORDER BY avg_solved DESC, avg_total_time ASC""" % s1
c.execute('DROP VIEW IF EXISTS bestPlannerConfigs')
c.execute('CREATE VIEW IF NOT EXISTS bestPlannerConfigs AS %s' % s2)
conn.commit()
c.close()
if __name__ == "__main__":
usage = """%prog [options] [<benchmark.log> ...]"""
parser = OptionParser(usage)
parser.add_option("-d", "--database", dest="dbname", default="benchmark.db",
help="Filename of benchmark database [default: %default]")
parser.add_option("-v", "--view", action="store_true", dest="view", default=False,
help="Compute the views for best planner configurations")
parser.add_option("-p", "--plot", dest="plot", default=None,
help="Create a PDF of plots")
parser.add_option("-m", "--mysql", dest="mysqldb", default=None,
help="Save SQLite3 database as a MySQL dump file")
parser.add_option("--moveit", action="store_true", dest="moveit", default=False,
help="Log files are produced by MoveIt!")
(options, args) = parser.parse_args()
if len(args)>0:
readBenchmarkLog(options.dbname, args, options.moveit)
# If we update the database, we recompute the views as well
options.view = True
if options.view:
computeViews(options.dbname, options.moveit)
if options.plot:
plotStatistics(options.dbname, options.plot)
if options.mysqldb:
saveAsMysql(options.dbname, options.mysqldb)
|