/usr/share/openscad/libraries/MCAD/gears.scad is in openscad-mcad 2014.03-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 | // Copyright 2010 D1plo1d
// LGPL 2.1
//test_involute_curve();
//test_gears();
//demo_3d_gears();
// Geometry Sources:
// http://www.cartertools.com/involute.html
// gears.py (inkscape extension: /usr/share/inkscape/extensions/gears.py)
// Usage:
// Diametral pitch: Number of teeth per unit length.
// Circular pitch: Length of the arc from one tooth to the next
// Clearance: Radial distance between top of tooth on one gear to bottom of gap on another.
module gear(number_of_teeth,
circular_pitch=false, diametral_pitch=false,
pressure_angle=20, clearance = 0)
{
if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");
//Convert diametrial pitch to our native circular pitch
circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch);
// Pitch diameter: Diameter of pitch circle.
pitch_diameter = number_of_teeth * circular_pitch / 180;
pitch_radius = pitch_diameter/2;
// Base Circle
base_diameter = pitch_diameter*cos(pressure_angle);
base_radius = base_diameter/2;
// Diametrial pitch: Number of teeth per unit length.
pitch_diametrial = number_of_teeth / pitch_diameter;
// Addendum: Radial distance from pitch circle to outside circle.
addendum = 1/pitch_diametrial;
//Outer Circle
outer_radius = pitch_radius+addendum;
outer_diameter = outer_radius*2;
// Dedendum: Radial distance from pitch circle to root diameter
dedendum = addendum + clearance;
// Root diameter: Diameter of bottom of tooth spaces.
root_radius = pitch_radius-dedendum;
root_diameter = root_radius * 2;
half_thick_angle = 360 / (4 * number_of_teeth);
union()
{
rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001);
for (i= [1:number_of_teeth])
//for (i = [0])
{
rotate([0,0,i*360/number_of_teeth])
{
involute_gear_tooth(
pitch_radius = pitch_radius,
root_radius = root_radius,
base_radius = base_radius,
outer_radius = outer_radius,
half_thick_angle = half_thick_angle);
}
}
}
}
module involute_gear_tooth(
pitch_radius,
root_radius,
base_radius,
outer_radius,
half_thick_angle
)
{
pitch_to_base_angle = involute_intersect_angle( base_radius, pitch_radius );
outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius );
base1 = 0 - pitch_to_base_angle - half_thick_angle;
pitch1 = 0 - half_thick_angle;
outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle;
b1 = polar_to_cartesian([ base1, base_radius ]);
p1 = polar_to_cartesian([ pitch1, pitch_radius ]);
o1 = polar_to_cartesian([ outer1, outer_radius ]);
b2 = polar_to_cartesian([ -base1, base_radius ]);
p2 = polar_to_cartesian([ -pitch1, pitch_radius ]);
o2 = polar_to_cartesian([ -outer1, outer_radius ]);
// ( root_radius > base_radius variables )
pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius );
root1 = pitch1 - pitch_to_root_angle;
root2 = -pitch1 + pitch_to_root_angle;
r1_t = polar_to_cartesian([ root1, root_radius ]);
r2_t = polar_to_cartesian([ -root1, root_radius ]);
// ( else )
r1_f = polar_to_cartesian([ base1, root_radius ]);
r2_f = polar_to_cartesian([ -base1, root_radius ]);
if (root_radius > base_radius)
{
//echo("true");
polygon( points = [
r1_t,p1,o1,o2,p2,r2_t
], convexity = 3);
}
else
{
polygon( points = [
r1_f, b1,p1,o1,o2,p2,b2,r2_f
], convexity = 3);
}
}
// Mathematical Functions
//===============
// Finds the angle of the involute about the base radius at the given distance (radius) from it's center.
//source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html
function involute_intersect_angle(base_radius, radius) = sqrt( pow(radius/base_radius,2) - 1);
// Polar coord [angle, radius] to cartesian coord [x,y]
function polar_to_cartesian(polar) = [
polar[1]*cos(polar[0]),
polar[1]*sin(polar[0])
];
// Test Cases
//===============
module test_gears()
{
gear(number_of_teeth=51,circular_pitch=200);
translate([0, 50])gear(number_of_teeth=17,circular_pitch=200);
translate([-50,0]) gear(number_of_teeth=17,diametral_pitch=1);
}
module demo_3d_gears()
{
//double helical gear
// (helics don't line up perfectly - for display purposes only ;)
translate([50,0])
{
linear_extrude(height = 10, center = true, convexity = 10, twist = -45)
gear(number_of_teeth=17,diametral_pitch=1);
translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45)
gear(number_of_teeth=17,diametral_pitch=1);
}
//spur gear
translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
gear(number_of_teeth=17,diametral_pitch=1);
}
module test_involute_curve()
{
for (i=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
{
translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5);
}
}
|