This file is indexed.

/usr/share/openscad/libraries/MCAD/gears.scad is in openscad-mcad 2014.03-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
// Copyright 2010 D1plo1d
// LGPL 2.1


//test_involute_curve();
//test_gears();
//demo_3d_gears();

// Geometry Sources:
//	http://www.cartertools.com/involute.html
//	gears.py (inkscape extension: /usr/share/inkscape/extensions/gears.py)
// Usage:
//	Diametral pitch: Number of teeth per unit length.
//	Circular pitch: Length of the arc from one tooth to the next
//	Clearance: Radial distance between top of tooth on one gear to bottom of gap on another.

module gear(number_of_teeth,
		circular_pitch=false, diametral_pitch=false,
		pressure_angle=20, clearance = 0)
{
	if (circular_pitch==false && diametral_pitch==false) echo("MCAD ERROR: gear module needs either a diametral_pitch or circular_pitch");

	//Convert diametrial pitch to our native circular pitch
	circular_pitch = (circular_pitch!=false?circular_pitch:180/diametral_pitch);

	// Pitch diameter: Diameter of pitch circle.
	pitch_diameter  =  number_of_teeth * circular_pitch / 180;
	pitch_radius = pitch_diameter/2;

	// Base Circle
	base_diameter = pitch_diameter*cos(pressure_angle);
	base_radius = base_diameter/2;

	// Diametrial pitch: Number of teeth per unit length.
	pitch_diametrial = number_of_teeth / pitch_diameter;

	// Addendum: Radial distance from pitch circle to outside circle.
	addendum = 1/pitch_diametrial;

	//Outer Circle
	outer_radius = pitch_radius+addendum;
	outer_diameter = outer_radius*2;

	// Dedendum: Radial distance from pitch circle to root diameter
	dedendum = addendum + clearance;

	// Root diameter: Diameter of bottom of tooth spaces.
	root_radius = pitch_radius-dedendum;
	root_diameter = root_radius * 2;

	half_thick_angle = 360 / (4 * number_of_teeth);

	union()
	{
		rotate(half_thick_angle) circle($fn=number_of_teeth*2, r=root_radius*1.001);

		for (i= [1:number_of_teeth])
		//for (i = [0])
		{
			rotate([0,0,i*360/number_of_teeth])
			{
				involute_gear_tooth(
					pitch_radius = pitch_radius,
					root_radius = root_radius,
					base_radius = base_radius,
					outer_radius = outer_radius,
					half_thick_angle = half_thick_angle);
			}
		}
	}
}


module involute_gear_tooth(
					pitch_radius,
					root_radius,
					base_radius,
					outer_radius,
					half_thick_angle
					)
{
	pitch_to_base_angle  = involute_intersect_angle( base_radius, pitch_radius );

	outer_to_base_angle = involute_intersect_angle( base_radius, outer_radius );

	base1 = 0 - pitch_to_base_angle - half_thick_angle;
	pitch1 = 0 - half_thick_angle;
	outer1 = outer_to_base_angle - pitch_to_base_angle - half_thick_angle;

	b1 = polar_to_cartesian([ base1, base_radius ]);
	p1 = polar_to_cartesian([ pitch1, pitch_radius ]);
	o1 = polar_to_cartesian([ outer1, outer_radius ]);

	b2 = polar_to_cartesian([ -base1, base_radius ]);
	p2 = polar_to_cartesian([ -pitch1, pitch_radius ]);
	o2 = polar_to_cartesian([ -outer1, outer_radius ]);

	// ( root_radius > base_radius variables )
		pitch_to_root_angle = pitch_to_base_angle - involute_intersect_angle(base_radius, root_radius );
		root1 = pitch1 - pitch_to_root_angle;
		root2 = -pitch1 + pitch_to_root_angle;
		r1_t =  polar_to_cartesian([ root1, root_radius ]);
		r2_t =  polar_to_cartesian([ -root1, root_radius ]);

	// ( else )
		r1_f =  polar_to_cartesian([ base1, root_radius ]);
		r2_f =  polar_to_cartesian([ -base1, root_radius ]);

	if (root_radius > base_radius)
	{
		//echo("true");
		polygon( points = [
			r1_t,p1,o1,o2,p2,r2_t
		], convexity = 3);
	}
	else
	{
		polygon( points = [
			r1_f, b1,p1,o1,o2,p2,b2,r2_f
		], convexity = 3);
	}

}

// Mathematical Functions
//===============

// Finds the angle of the involute about the base radius at the given distance (radius) from it's center.
//source: http://www.mathhelpforum.com/math-help/geometry/136011-circle-involute-solving-y-any-given-x.html

function involute_intersect_angle(base_radius, radius) = sqrt( pow(radius/base_radius,2) - 1);



// Polar coord [angle, radius] to cartesian coord [x,y]

function polar_to_cartesian(polar) = [
	polar[1]*cos(polar[0]),
	polar[1]*sin(polar[0])
];


// Test Cases
//===============

module test_gears()
{
	gear(number_of_teeth=51,circular_pitch=200);
	translate([0, 50])gear(number_of_teeth=17,circular_pitch=200);
	translate([-50,0]) gear(number_of_teeth=17,diametral_pitch=1);
}

module demo_3d_gears()
{
	//double helical gear
	// (helics don't line up perfectly - for display purposes only ;)
	translate([50,0])
	{
	linear_extrude(height = 10, center = true, convexity = 10, twist = -45)
	 gear(number_of_teeth=17,diametral_pitch=1);
	translate([0,0,10]) linear_extrude(height = 10, center = true, convexity = 10, twist = 45)
	 gear(number_of_teeth=17,diametral_pitch=1);
	}

	//spur gear
	translate([0,-50]) linear_extrude(height = 10, center = true, convexity = 10, twist = 0)
	 gear(number_of_teeth=17,diametral_pitch=1);

}

module test_involute_curve()
{
	for (i=[0,1,2,3,4,5,6,7,8,9,10,11,12,13,14,15])
	{
		translate(polar_to_cartesian([involute_intersect_angle( 0.1,i) , i ])) circle($fn=15, r=0.5);
	}
}