This file is indexed.

/usr/share/openturns/validation/ValidFORMKernelMixture.txt is in openturns-validation 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
> restart:
> with(Statistics):
> #Digits:=30:
> phi:=proc(x)
>   1/sqrt(2*Pi)*exp(-x^2/2)
> end:
> PHI:=proc(x)
>   int(phi(t),t=-infinity..x)
> end:
> g:=x1+x2;

                             g := x1 + x2

> CDF_x1:=1/2*CDF(Normal(mu1,sigma1),x1)+1/2*CDF(Normal(mu2,sigma2),x1);
> CDF_x2:=CDF(Normal(mux2,sigmax2),x2);

                          1/2                        1/2
                         2    (x1 - mu1)            2    (x1 - mu2)
 CDF_x1 := 1/2 + 1/4 erf(---------------) + 1/4 erf(---------------)
                            2 sigma1                   2 sigma2


                                       1/2
                                      2    (x2 - mux2)
              CDF_x2 := 1/2 + 1/2 erf(----------------)
                                         2 sigmax2

> u1:=subs(s=CDF_x1,Quantile(Normal(0,1),s));
> u2:=subs(t=CDF_x2,Quantile(Normal(0,1),t));
> X1:=subs(s=solve(CDF_x1=U1,x1),CDF(Normal(0,1),s));
> X2:=subs(t=solve(CDF_x2=U2,x2),CDF(Normal(0,1),t));

                                   1/2
                                  2    (x1 - mu1)
  u1 := RootOf(-erf(_Z) + 1/2 erf(---------------)
                                     2 sigma1

                    1/2
                   2    (x1 - mu2)    1/2
         + 1/2 erf(---------------)) 2
                      2 sigma2


                                      1/2
                                     2    (x2 - mux2)    1/2
         u2 := RootOf(-erf(_Z) + erf(----------------)) 2
                                        2 sigmax2


  X1 := 1/2 + 1/2 erf(1/2 RootOf(

                 1/2                    1/2
                2    (_Z - mu1)        2    (_Z - mu2)           1/2
        2 + erf(---------------) + erf(---------------) - 4 U1) 2   )
                   2 sigma1               2 sigma2


                      1/2
                     2    mux2
 X2 := 1/2 + 1/2 erf(--------- + RootOf(erf(_Z) + 1 - 2 U2) sigmax2)
                         2

> G:=subs(x1=X1,x2=X2,g):
> L:=1/2*(U1^2+U2^2)+lambda*G:
> sys:={diff(L,U1),diff(L,U2),diff(L,lambda)}:
> ValNum:={mu1=-1.0,sigma1=0.25,mu2=2.0,sigma2=2.0,mux2=2.5,sigmax2=3.0}
> :
> evalf(subs(ValNum,sys)):
> vars:={U1,U2,lambda}:
> sol:=fsolve(subs(ValNum,sys),vars);

                                                      /      /
                                          2   1/2   / |  1/2 |
  sol := fsolve({U1 + 2 lambda exp(-1/2 %1 ) 2     /  |Pi    |
                                                  /   |      |
                                                      \      \

                                               2   1/2
        4.000000000 exp(-8.000000000 (%1 + 1.0) ) 2
        ----------------------------------------------
                              1/2
                            Pi

                                                    2   1/2\\
           0.5000000000 exp(-0.1250000000 (%1 - 2.0) ) 2   ||
         + ------------------------------------------------||, U2 +
                                  1/2                      ||
                                Pi                         //

        3.0 lambda

                           1/2                                  2
        exp(-(1.250000000 2    + 3.0 RootOf(erf(_Z) + 1 - 2 U2)) )

           /                                2
          /  exp(-RootOf(erf(_Z) + 1 - 2 U2) ), 1
         /

                           1/2
         + 1/2 erf(1/2 %1 2   )

                                1/2
         + 1/2 erf(1.250000000 2    + 3.0 RootOf(erf(_Z) + 1 - 2 U2))

        }, {lambda, U2, U1})

                                    1/2
  %1 := RootOf(2 + erf(2.000000000 2    (_Z + 1.0))

                             1/2
         + erf(0.2500000000 2    (_Z - 2.0)) - 4 U1)

> 
> PointConception:=subs(sol,[u_E,u_F,u_L]);
> beta:=subs(sol,sqrt(u_L^2+u_F^2+u_E^2));
> FacteursImportance:=subs(sol,[F_E=(u_E/beta)^2,F_F=(u_F/beta)^2,F_L=(u
> _L/beta)^2]);
> Pdef_FORM:=PHI(-beta);
> with(plots):
> p1:=implicitplot3d(subs(ValNum,g),u_E=-4..0,u_F=0..4,u_L=0..4,style=PA
> TCHNOGRID,scaling=constrained,axes=normal,grid=[31,31,31],lightmodel='
> light1'):
> p2:=pointplot3d(PointConception,symbol=circle,symbolsize=15,style=POIN
> T,color=red,scaling=constrained):
> p3:=spacecurve([PointConception[1]*t,PointConception[2]*t,PointConcept
> ion[3]*t],t=0..1,color=blue,scaling=constrained):
> display3d({p1,p2,p3});
Warning, computation interrupted

> expr:=subs(ValNum,solve(g,u_F));
> A:=infinity;
> Pde:=Int(Int(int(phi(u_E)*phi(u_F)*phi(u_L),u_F=expr..infinity),u_E=-A
> ..A),u_L=-A..A);

                /          1/2                             1/2     3
                |         2    u_L                        2    u_L
  expr := -1/50 |-240 erf(--------) + 480 u_E - 1/125 erf(--------)
                \            2                               2

                     1/2     2       \     /               1/2     3
                    2    u_L         |   / |              2    u_L
         - 12/5 erf(--------)  + 2080|  /  |-1/125000 erf(--------)
                       2             / /   \                 2

                       1/2     2             1/2         \
                      2    u_L              2    u_L     |
         - 3/1250 erf(--------)  - 6/25 erf(--------) - 8|
                         2                     2         /


                            A := infinity


            infinity    infinity
           /           /                       2      2  /       /
          |           |                     u_E    u_L   |       |
  Pde :=  |           |          -1/4 exp(- ---- - ----) |erf(10 |
          |           |                      2      2    \       \
         /           /
           -infinity   -infinity

                    1/2                         1/2     3
                   2    u_L                    2    u_L
        -30000 erf(--------) + 60000 u_E - erf(--------)
                      2                           2

                    1/2     2         \          /     1/2     3
                   2    u_L           |  1/2   / |    2    u_L
         - 300 erf(--------)  + 260000| 2     /  |erf(--------)
                      2               /      /   \       2

                    1/2     2              1/2               \     \
                   2    u_L               2    u_L           |     |
         + 300 erf(--------)  + 30000 erf(--------) + 1000000|) - 1|/
                      2                      2               /     /

        Pi du_E du_L

> for i from 1 to 10 do
>   evalf[i](Pde);
> od;

                                0.0006


                               0.00060


                               0.000604


                              0.0006038


                              0.00060378


                             0.000603785


                             0.0006037850


                            0.00060378500


                            0.000603785000


                           0.0006037850000

>