This file is indexed.

/usr/share/openturns/validation/ValidGeometric.txt is in openturns-validation 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
> restart:
> with(Statistics):
> geometric_:=RandomVariable(Geometric(p)):
> pdf:=subs(u=n-1,ProbabilityFunction(geometric_,u));
> cdf:=simplify(subs(u=n-1,CDF(geometric_,u)));
> mu_:=factor(1+Mean(geometric_));
> var_:=Variance(geometric_);
> skew_:=simplify(convert(Skewness(geometric_),GAMMA),symbolic);
> kurt_:=simplify(convert(Kurtosis(geometric_),GAMMA),symbolic);
> qdf:=simplify(1+Quantile(geometric_,q));
> qdf2:=solve(cdf=q,K);
> pdfgr:=factor(diff(pdf, p));
> cdfgr:=diff(cdf, p);
> valnum:=p=0.7:
> evalf(subs(valnum,n=3,pdf));
> evalf(subs(valnum,n=3,cdf));
> evalf(subs(valnum,n=3,map(_x->_x,pdfgr)));
> evalf(subs(valnum,n=3,cdfgr));
> evalf(subs(valnum,q=0.95,qdf));
> evalf(subs(valnum,mu_));
> evalf(subs(valnum,sqrt(var_)));
> evalf(subs(valnum,skew_));
> evalf(subs(valnum,kurt_));
> evalf(subs(valnum,var_));

                     {        0                  n < 1
              pdf := {
                     {          (n - 1)
                     { p (1 - p)               otherwise


                     {          0                 n < 1
              cdf := {
                     {            floor(n)
                     { 1 - (1 - p)                1 <= n


                              mu_ := 1/p


                                    1 - p
                            var_ := -----
                                      2
                                     p


                                     -2 + p
                        skew_ := - ----------
                                          1/2
                                   (1 - p)


                                   2
                                  p  - 9 p + 9
                       kurt_ := - ------------
                                     -1 + p


                                    ln(1 - q)
                        qdf := ceil(---------)
                                    ln(1 - p)


                               qdf2 :=


                 {             0                      n < 1
                 {
        pdfgr := {        (n - 1)
                 { (1 - p)        (-1 + p n)
                 { -------------------------        otherwise
                 {          -1 + p


                   {            0                    n < 1
                   {
          cdfgr := {        floor(n)
                   { (1 - p)         floor(n)
                   { ------------------------        1 <= n
                   {          1 - p


                                0.063


                                0.973


                            -0.3300000000


                             0.2700000000


                                  3.


                             1.428571429


                             0.7824607965


                             2.373464415


                             10.63333333


                             0.6122448980

>