This file is indexed.

/usr/share/openturns/validation/valid_SORM.txt is in openturns-validation 1.5-7build2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
> restart:
> with(LinearAlgebra):
> Digits:=30:
> G:=-F_*L_^3/(6*E_*I_)-s;
> T:=E_=E_moy+E_sd*u1,F_=F_moy+F_sd*u2,L_=L_moy+L_sd*u3,I_=I_moy+I_sd*u4
> ;
> g:=subs(T,G):
> L:=1/2*(u1^2+u2^2+u3^2+u4^2)-lambda*g:
> sys:=diff(L,u1),diff(L,u2),diff(L,u3),diff(L,u4),diff(L,lambda):
> #sol:=solve({sys},{u1,u2,u3,u4,lambda});
> num:=E_moy=50,E_sd=1,F_moy=1,F_sd=1,L_moy=10,L_sd=1,I_moy=5,I_sd=1,s=-
> 3/2;
> solnum:=fsolve(subs(num,{sys}),{u1,u2,u3,u4,lambda}):
> subs(solnum,[u1,u2,u3,u4,lambda]);
> beta:=subs(solnum,sqrt(u1^2+u2^2+u3^2+u4^2));

                                      3
                                 F_ L_
                          G := - ------- - s
                                 6 E_ I_


  T := E_ = E_moy + E_sd u1, F_ = F_moy + F_sd u2,

        L_ = L_moy + L_sd u3, I_ = I_moy + I_sd u4


  num := E_moy = 50, E_sd = 1, F_moy = 1, F_sd = 1, L_moy = 10,

        L_sd = 1, I_moy = 5, I_sd = 1, s = -3/2


  [-0.0310354131886385333411402260320,

        0.841941676288555078886397764047,

        0.445403785549829310777385152548,

        -0.332237896484057720356713452438,

        -1.03387164170675809896100912782]


               beta := 1.00925494062979021864719380923

> grad_g:=<diff(g,u1),diff(g,u2),diff(g,u3),diff(g,u4)>:
> hess_g:=<map(_x->diff(_x,u1),grad_g)|map(_x->diff(_x,u2),grad_g)|map(_
> x->diff(_x,u3),grad_g)|map(_x->diff(_x,u4),grad_g)>:
> map(_x->evalf(subs(num,solnum,_x)),grad_g):
> map(_x->evalf(subs(num,solnum,_x)),hess_g):
> M:=-(DiagonalMatrix(<1|1|1|1>)-grad_g.Transpose(grad_g)/Norm(grad_g,2,
> conjugate=false)^2).hess_g/Norm(grad_g,2,conjugate=false):
> Mnum:=map(_x->evalf(subs(num,solnum,_x)),M);

  Mnum :=

        [0.000614816378567372974392585979320 ,

        -0.0116183116116243281612654229112 ,

        -0.000573373284883000134471679041010 ,

        -0.000713911705034510284765423988376]

        [0.0000157867985964623520085654659985 ,

        -0.137716634653075004620307551850 ,

        0.0155547104103061432509295616504 ,

        0.0193672954829168170140631189703]

        [                                   -5
        [0.835152844265092281487270805652 10   ,

        0.166739844643325812480067438882 ,

        -0.0340213552191429707721507036239 ,

                                         ]
        0.0102456820548182678055685111984]

        [                                    -5
        [-0.622961531139187778757812603112 10   ,

        -0.124375447720974981776359682983 ,

        -0.00613803118752803886389482548954 ,

                                         ]
        0.0628819155269579205767490657498]

> curvatures:=Eigenvalues(Mnum);

                  [   -0.150290062567166656332912272142 + 0. I   ]
                  [                                              ]
                  [  0.000407816322332149654279388752865 + 0. I  ]
    curvatures := [                                              ]
                  [                                    -29       ]
                  [-0.192028063722549999999376072675 10    + 0. I]
                  [                                              ]
                  [   0.0416409882781418248373162796491 + 0. I   ]

> with(Statistics):
> X:=RandomVariable(Normal(0,1)):
> PFORM:=evalf(subs(x=-beta,CDF(X,x)));

              PFORM := 0.156426191965496816525285557108

> PSORM:=PFORM:
> for i from 1 to 4 do
>   PSORM:=PSORM/sqrt(1+beta*curvatures[i]);
> od:
> PSORM;

               0.166341709365589303575903437939 - 0. I

>