/usr/share/povray-3.7/include/shapes.inc is in povray-includes 1:3.7.0.0-8build1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 | // This work is licensed under the Creative Commons Attribution-ShareAlike 3.0 Unported License.
// To view a copy of this license, visit http://creativecommons.org/licenses/by-sa/3.0/ or send a
// letter to Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.
// Persistence of Vision Ray Tracer version 3.5 Include File
// File: shapes.inc
// Last updated: April-2013
// Description: This file contains macros for working with objects, as well
// as macros for creating special objects, such as bevelled text,
// height fields, and rounded shapes.
#ifndef( Shapes_Inc_Temp )
#declare Shapes_Inc_Temp = version;
#version 3.5;
#ifdef(View_POV_Include_Stack)
#debug "including shapes.inc\n"
#end
#include "shapes_old.inc"
#include "consts.inc"
#include "transforms.inc"
#include "strings.inc"
#include "math.inc"
// These macros are just interfaces to the trace() function.
// They return values through their parameters:
// If an intersection is found, they return true and set
// OPt to the intersection point, and ONorm to the normal.
// Otherwise they return false, and do not modify OPt or ONorm.
#macro Isect(Pt, Dir, Obj, OPt)
#local Norm = <0,0,0>;
#local IPt = trace(Obj, Pt, Dir, Norm);
#if (vlength(Norm) > 0)
#declare OPt = IPt;
#local Return=true;
#else
#local Return=false;
#end
(Return)
#end
#macro IsectN(Pt, Dir, Obj, OPt, ONorm)
#local Norm = <0,0,0>;
#local IPt = trace(Obj, Pt, Dir, Norm);
#if (vlength(Norm) > 0)
#declare OPt = IPt;
#declare ONorm = Norm;
#local Return=true;
#else
#local Return=false;
#end
(Return)
#end
// A shortcut for getting both min and max extents of an object
#macro Extents(Obj, Min, Max)
#declare Min = min_extent(Obj);
#declare Max = max_extent(Obj);
#end
// shortcuts for using the CenterTrans and AlignTrans
// macros with objects.
#macro Center_Object(Object, Axis)
object {Object Center_Trans(Object, Axis)}
#end
#macro Align_Object(Object, Axis, Pt)
object {Object Align_Trans(Object, Axis, Pt)}
#end
// A simple beveled text macro. The parameters are:
// Font: the name of the font file.
// String: the text string the text object is composed of.
// Cuts: the number of times excess material is cut off, to form the bevel.
// More cuts will give smoother results, but take longer to render.
// BevelAng: the angle of the bevel.
// BevelDepth: the depth of the bevelled portion of the text.
// Depth: the total depth of the text object.
// Offset: the offset value for the text object. Since the front faces of each
// letter need to be in the same plane, z values are ignored.
#macro Bevelled_Text(Font, String, Cuts, BevelAng, BevelDepth, Depth, Offset, UseMerge)
#if(UseMerge)
merge {
#else
union {
#end
text {ttf Font, String Depth-BevelDepth, Offset*(x+y)}
intersection {
#local J=0;
#while(J<Cuts)
#local A = 2*pi*J/(Cuts);
#local CA = cos(radians(BevelAng));
#local SA = sin(radians(BevelAng));
text {ttf Font, String BevelDepth, Offset*(x+y)
translate -z*(BevelDepth+J*0.0001)
Shear_Trans(x, y, < cos(A)*SA, sin(A)*SA, CA>/CA)
}
#local J=J+1;
#end
}
translate z*BevelDepth
}
#end
// Constants used for the text macros
#declare Align_Left = 1;
#declare Align_Right = 2;
#declare Align_Center = 3;
/* Text_Space( Font, String, Size, Spacing )
Computes the width of a text string, including "white space". It
returns the advance widths of all n letters. Text_Space gives the
space a text or a glyph occupies in regard to its surroundings.
Font: The font to use (see the documentation for the text object)
String: The text for which we want to know the width
Size: The size to which the text should be scaled
Spacing: The amount of space to add between the letters. */
#macro Text_Space(Font, String, Size, Spacing)
#local TO = text {ttf Font concat("|",String,"|") 1 Spacing*x scale <Size,Size,1>}
#local SO = text {ttf Font "||" 1 Spacing*x scale <Size,Size,1>}
((max_extent(TO).x-min_extent(TO).x)-(max_extent(SO).x-min_extent(SO).x))
#end
/* Text_Width( Font, String, Size, Spacing )
Computes the width of a text string. It returns the advance widths
of the first n-1 letters, plus the glyph width of the last letter.
Text_Width gives the "fysical" width of the text and if you use
only one letter the "fysical" width of one glyph.
Font: The font to use (see the documentation for the text object)
String: The text for which we want to know the width
Size: The size to which the text should be scaled
Spacing: The amount of space to add between the letters. */
#macro Text_Width(Font, String, Size, Spacing)
#local TO = text {ttf Font String 1 Spacing*x scale <Size,Size,1>}
(max_extent(TO).x-min_extent(TO).x)
#end
// Circle_Text author: Ron Parker
/* Circle_Text( Font, Text, Size, Spacing, Thickness, Radius, Inverted,
Justification, Angle )
Creates a text object with the bottom (or top) of the character cells aligned
with all or part of a circle. This macro should be used inside an object{...}
block.
Font: The font to use (see the documentation for the text object)
Text: The text string to be created
Size: The height of the text string, as you would use to scale a
standard text object
Spacing: The amount of space to add between the letters.
Thickness: The thickness of the letters (see the documentation for the
text object)
Radius: The radius of the circle along which the letters are aligned
Inverted: If this parameter is nonzero, the tops of the letters will
point toward the center of the circle. Otherwise, the bottoms
of the letters will do so.
Justification: One of the constants Align_Left, Align_Right, or Align_Center
Angle: The point on the circle from which rendering will begin. The
+x direction is 0 and the +y direction is 90 (i.e. the angle
increases anti-clockwise. */
#macro Circle_Text(F, T, S, Sp, Th, R, I, J, A) //----------------------------------------
object{ Circle_Text_Valigned( F, // Font, i.e.: "arial.ttf",
T, // Text, i.e.: "POVRay",
S, // LetterSize, i.e.: 0.75,
Sp,// LetterSpacing, i.e.: 0.025,
Th,// Deepth, i.e.: 15.00,
R, // Radius, i.e.: 1.25
I, // Inverted, 0 or 1
J, // Justification: Align_Left, Align_Right, or Align_Center
A, // Circle angle
0 // Valign: Rotates for vertical objects.
// -90 = right side up, 90 = upside-down, 0 = horzontal.
) } //--------------------------------------------------------
#end //-------------------------------------------------------------- end macro Circle_Text
// Cicle_Text macro expanded by rotating the letters:
#macro Circle_Text_Valigned( F, // Font, i.e.: "arial.ttf",
T, // Text, i.e.: "POVRay",
S, // LetterSize, i.e.: 0.75,
Sp,// LetterSpacing, i.e.: 0.025,
Th,// Deepth, i.e.: 15.00,
R, // Radius, i.e.: 1.25
I, // Inverted, 0 or 1
J, // Justification: Align_Left, Align_Right, or Align_Center
A, // Circle angle
Valign// Valign: Rotates the letters. -90 = right side up, 90 = upside-down, 0 = horzontal.
) //----------------------------------------------------------------------------------------------
#local FW = Text_Width(F, T, S, Sp);
#local TO = text {ttf F T 1 0 scale<S, S, 1>}
#local TH = max_extent(TO).y;
#local C = array[strlen(T)]
#if(FW > 2*pi*R)
#error concat("\n\n**** Text string \"", T, "\" is too long for a circle of the specified radius.\n\n\n")
#end
#local AW = -FW*180/pi/R;
#local SA = A;
#local EA = A + AW;
#if(((J = Align_Right) & !I)|((J = Align_Left) & I))
#local SA = A - AW;
#local EA = A;
#else
#if(J = Align_Center)
#local SA = A - AW/2;
#local EA = A + AW/2;
#end
#end
#local CI = 1;
#while(CI <= strlen(T))
#local OE = Text_Width(F, substr(T,CI,1), S, Sp);
#local LW = Text_Width(F, substr(T,1,CI), S, Sp) - OE;
#local LA = SA + AW*LW/FW + OE/2/FW*AW;
#if(I)
#local LA = EA - (LA - SA);
#end
#local TO = text {ttf F substr(T, CI, 1) Th 0 scale<S,S,1> rotate x*Valign}
#if(I)
#local C[CI-1] =
object {TO
rotate 180*z
translate <OE/2, TH, 0>
rotate -90*z
translate R*x
rotate LA*z
}
#else
#local C[CI-1] =
object {TO
translate -OE/2*x
rotate -90*z
translate R*x
rotate LA*z
}
#end
#local CI = CI + 1;
#end
// Create the final object, a union of individual text object letters.
union {
#local CI=0;
#while(CI < strlen(T))
object {C[CI]}
#local CI = CI + 1;
#end
}
// --------------------------------------------------------------------------------------
#end// of macro --------------------------------------------- end of macro Circle_Text_Valigned
#macro Wedge(Angle)
#local A = clamp(Angle, 0, 360);
#if(A < 180)
difference {
plane {-x, 0}
plane {-x, 0 rotate y*A}
}
#else
#if(A = 180)
plane {-x, 0}
#else
intersection {
plane {x, 0}
plane {-x, 0 rotate y*A}
inverse
}
#end
#end
#end
#macro Spheroid(Center, Radius)
sphere { 0, 1 scale Radius translate Center }
#end
#macro Supertorus(RMj, RMn, MajorControl, MinorControl, Accuracy, MaxGradient)
#local CP = 2/MinorControl;
#local RP = 2/MajorControl;
isosurface {
function { pow( pow(abs(pow(pow(abs(x),RP) + pow(abs(z),RP), 1/RP) - RMj),CP) + pow(abs(y),CP) ,1/CP) - RMn }
threshold 0
contained_by {box {<-RMj-RMn,-RMn,-RMj-RMn>, < RMj+RMn, RMn, RMj+RMn>}}
#if(MaxGradient >= 1)
max_gradient MaxGradient
#else
evaluate 1, 10, 0.1
#end
accuracy Accuracy
}
#end
// Supercone author: Juha Nieminen
// A cone object where each end is an ellipse, you specify two radii
// for each end.
// SuperCone function: (x^2/a^2+y^2/b^2-1)*(1-z) + (x^2/c^2+y^2/d^2-1)*z = 0
//
// camera { location <6,5,-10> look_at 0 angle 35 }
// light_source { <100,100,-20>,1 }
// plane { y,-1.5 pigment { checker rgb 1, rgb .5 } }
// object { SuperCone(<0,-1.5,0>,1,2, <0,1.5,0>,1,.5)
// pigment { rgb x } finish { specular .5 }
// }
#macro Supercone(PtA, A, B, PtB, C, D)
intersection {
quartic {
<0, 0, 0, 0, 0, 0, 0, B*B-2*B*D+D*D, 2*(B*D-B*B), B*B,
0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
0, 0, 0, A*A-2*A*C+C*C, 2*(A*C-A*A), A*A, 0, 0, 0, 0,
-(A*A-2*A*C+C*C)*(B*B-2*B*D+D*D),
-(2*((B*D-B*B)*(A*A-2*A*C+C*C)+(A*C-A*A)*(B*B-2*B*D+D*D))),
-(B*B*(A*A-2*A*C+C*C)+4*(A*C-A*A)*(B*D-B*B)+A*A*(B*B-2*B*D+D*D)),
-(2*(B*B*(A*C-A*A)+A*A*(B*D-B*B))), -A*A*B*B>
sturm
}
cylinder {0, z, max(max(abs(A), abs(B)), max(abs(C), abs(D)))}
bounded_by {cone {0, max(abs(A), abs(B)), z, max(abs(C), abs(D))}}
#local Dirv = PtB - PtA;
scale <1,1,vlength(Dirv)>
#local Dirv = vnormalize(Dirv);
#if(vlength(Dirv-<0,0,-1>)=0) scale <1,1,-1>
#else Reorient_Trans(z, Dirv)
#end
translate PtA
}
#end
// Connect two spheres with a cylinder.
// Derived from Connect() macro by John VanSickle
#macro Connect_Spheres(PtA, RadiusA, PtB, RadiusB)
#local Axis = PtB - PtA;
#local RadDif = RadiusA - RadiusB;
#local Len = VDist(PtA, PtB);
#local D2 = sqrt(f_sqr(Len) - f_sqr(RadDif));
cone {
PtA + Axis/Len*RadDif*RadiusA/Len, RadiusA*D2/Len,
PtB + Axis/Len*RadDif*RadiusB/Len, RadiusB*D2/Len
}
#end
#macro Wire_Box_Union(A, B, WireRadius)
Wire_Box(A, B, WireRadius, no)
#end
#macro Wire_Box_Merge(A, B, WireRadius)
Wire_Box(A, B, WireRadius, yes)
#end
#macro Wire_Box(A, B, WireRadius, UseMerge)
#local AA = <min(A.x, B.x), min(A.y, B.y), min(A.z, B.z)>;
#local BB = <max(A.x, B.x), max(A.y, B.y), max(A.z, B.z)>;
#local Delta=abs(BB.x-AA.x)/2;
#if (Delta<WireRadius)
#warning "\nWire_Box() macro called with x-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x+Delta, AA.y, AA.z>;
#local BB = <BB.x-Delta, BB.y, BB.z>;
#else
#local AA = <AA.x+WireRadius, AA.y, AA.z>;
#local BB = <BB.x-WireRadius, BB.y, BB.z>;
#end
#local Delta=abs(BB.y-AA.y)/2;
#if (Delta<WireRadius)
#warning "\nWire_Box() macro called with y-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x, AA.y+Delta, AA.z>;
#local BB = <BB.x, BB.y-Delta, BB.z>;
#else
#local AA = <AA.x, AA.y+WireRadius, AA.z>;
#local BB = <BB.x, BB.y-WireRadius, BB.z>;
#end
#local Delta=abs(BB.z-AA.z)/2;
#if (Delta<WireRadius)
#warning "\nWire_Box() macro called with z-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x, AA.y, AA.z+Delta>;
#local BB = <BB.x, BB.y, BB.z-Delta>;
#else
#local AA = <AA.x, AA.y, AA.z+WireRadius>;
#local BB = <BB.x, BB.y, BB.z-WireRadius>;
#end
#local LBF = AA;
#local RBF = < BB.x, AA.y, AA.z>;
#local RBB = < BB.x, AA.y, BB.z>;
#local LBB = < AA.x, AA.y, BB.z>;
#local LTF = < AA.x, BB.y, AA.z>;
#local RTF = < BB.x, BB.y, AA.z>;
#local RTB = BB;
#local LTB = < AA.x, BB.y, BB.z>;
#if(UseMerge)
merge {
#else
union {
#end
sphere {LBF, WireRadius}
#if (AA.x != BB.x)
sphere {RBF, WireRadius}
#end
#if ((AA.x != BB.x) & (AA.z != BB.z))
sphere {RBB, WireRadius}
#end
#if (AA.z != BB.z)
sphere {LBB, WireRadius}
#end
#if (AA.y != BB.y)
sphere {LTF, WireRadius}
#end
#if ((AA.x != BB.x) & (AA.y != BB.y))
sphere {RTF, WireRadius}
#end
#if ((AA.x != BB.x) & (AA.y != BB.y) & (AA.z != BB.z))
sphere {RTB, WireRadius}
#end
#if ((AA.y != BB.y) & (AA.z != BB.z))
sphere {LTB, WireRadius}
#end
#if (AA.x != BB.x)
cylinder {LBF, RBF, WireRadius}
cylinder {LBB, RBB, WireRadius}
cylinder {LTB, RTB, WireRadius}
cylinder {LTF, RTF, WireRadius}
#end
#if (AA.y != BB.y)
cylinder {LBF, LTF, WireRadius}
cylinder {RBF, RTF, WireRadius}
cylinder {RBB, RTB, WireRadius}
cylinder {LBB, LTB, WireRadius}
#end
#if (AA.z != BB.z)
cylinder {LTB, LTF, WireRadius}
cylinder {LBB, LBF, WireRadius}
cylinder {RTB, RTF, WireRadius}
cylinder {RBB, RBF, WireRadius}
#end
}
#end
#macro Round_Box_Union(A, B, EdgeRadius)
Round_Box(A, B, EdgeRadius, no)
#end
#macro Round_Box_Merge(A, B, EdgeRadius)
Round_Box(A, B, EdgeRadius, yes)
#end
#macro Round_Box(A, B, EdgeRadius, UseMerge)
#local AA = <min(A.x, B.x), min(A.y, B.y), min(A.z, B.z)>;
#local BB = <max(A.x, B.x), max(A.y, B.y), max(A.z, B.z)>;
#local Delta=abs(BB.x-AA.x)/2;
#if (Delta<EdgeRadius)
#warning "\nRound_Box() macro called with x-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x+Delta, AA.y, AA.z>;
#local BB = <BB.x-Delta, BB.y, BB.z>;
#else
#local AA = <AA.x+EdgeRadius, AA.y, AA.z>;
#local BB = <BB.x-EdgeRadius, BB.y, BB.z>;
#end
#local Delta=abs(BB.y-AA.y)/2;
#if (Delta<EdgeRadius)
#warning "\nRound_Box() macro called with y-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x, AA.y+Delta, AA.z>;
#local BB = <BB.x, BB.y-Delta, BB.z>;
#else
#local AA = <AA.x, AA.y+EdgeRadius, AA.z>;
#local BB = <BB.x, BB.y-EdgeRadius, BB.z>;
#end
#local Delta=abs(BB.z-AA.z)/2;
#if (Delta<EdgeRadius)
#warning "\nRound_Box() macro called with z-size < Radius,\nresults may not be as expected\n"
#local AA = <AA.x, AA.y, AA.z+Delta>;
#local BB = <BB.x, BB.y, BB.z-Delta>;
#else
#local AA = <AA.x, AA.y, AA.z+EdgeRadius>;
#local BB = <BB.x, BB.y, BB.z-EdgeRadius>;
#end
#local LBF = AA;
#local RBF = < BB.x, AA.y, AA.z>;
#local RBB = < BB.x, AA.y, BB.z>;
#local LBB = < AA.x, AA.y, BB.z>;
#local LTF = < AA.x, BB.y, AA.z>;
#local RTF = < BB.x, BB.y, AA.z>;
#local RTB = BB;
#local LTB = < AA.x, BB.y, BB.z>;
#if(UseMerge)
merge {
#else
union {
#end
sphere {LBF, EdgeRadius}
#if (AA.x != BB.x)
sphere {RBF, EdgeRadius}
#end
#if ((AA.x != BB.x) & (AA.z != BB.z))
sphere {RBB, EdgeRadius}
#end
#if (AA.z != BB.z)
sphere {LBB, EdgeRadius}
#end
#if (AA.y != BB.y)
sphere {LTF, EdgeRadius}
#end
#if ((AA.x != BB.x) & (AA.y != BB.y))
sphere {RTF, EdgeRadius}
#end
#if ((AA.x != BB.x) & (AA.y != BB.y) & (AA.z != BB.z))
sphere {RTB, EdgeRadius}
#end
#if ((AA.y != BB.y) & (AA.z != BB.z))
sphere {LTB, EdgeRadius}
#end
#if (AA.x != BB.x)
cylinder {LBF, RBF, EdgeRadius}
cylinder {LBB, RBB, EdgeRadius}
cylinder {LTB, RTB, EdgeRadius}
cylinder {LTF, RTF, EdgeRadius}
#end
#if (AA.y != BB.y)
cylinder {LBF, LTF, EdgeRadius}
cylinder {RBF, RTF, EdgeRadius}
cylinder {RBB, RTB, EdgeRadius}
cylinder {LBB, LTB, EdgeRadius}
#end
#if (AA.z != BB.z)
cylinder {LTB, LTF, EdgeRadius}
cylinder {LBB, LBF, EdgeRadius}
cylinder {RTB, RTF, EdgeRadius}
cylinder {RBB, RBF, EdgeRadius}
#end
box {AA-EdgeRadius*x, BB+EdgeRadius*x}
box {AA-EdgeRadius*y, BB+EdgeRadius*y}
box {AA-EdgeRadius*z, BB+EdgeRadius*z}
}
#end
#macro Round_Cylinder_Union(A, B, Radius, EdgeRadius)
Round_Cylinder(A, B, Radius, EdgeRadius, no)
#end
#macro Round_Cylinder_Merge(A, B, Radius, EdgeRadius)
Round_Cylinder(A, B, Radius, EdgeRadius, yes)
#end
#macro Round_Cylinder(A, B, Radius, EdgeRadius, UseMerge)
#if(UseMerge)
merge {
#else
union {
#end
#if(Radius<EdgeRadius)
#warning "\nRound_Cylinder() macro called with Radius < EdgeRadius,\nresults may not be as expected\n"
#local AA = A + vnormalize(B - A)*Radius;
#local BB = B + vnormalize(A - B)*Radius;
cylinder {AA, BB, Radius}
sphere {0, Radius translate AA }
sphere {0, Radius translate BB }
#else
#local AA = A + vnormalize(B - A)*EdgeRadius;
#local BB = B + vnormalize(A - B)*EdgeRadius;
cylinder {A, B, Radius - EdgeRadius}
cylinder {AA, BB, Radius}
torus {Radius - EdgeRadius, EdgeRadius translate y*EdgeRadius
Point_At_Trans(B - A)
translate A
}
torus {Radius - EdgeRadius, EdgeRadius translate y*(vlength(A - B) - EdgeRadius)
Point_At_Trans(B - A)
translate A
}
#end
}
#end
// Rounded cone with torus edges
// This shape will fit entirely within a cone given the same parameters.
#macro Round_Cone_Union(PtA, RadiusA, PtB, RadiusB, EdgeRadius)
Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, no)
#end
#macro Round_Cone_Merge(PtA, RadiusA, PtB, RadiusB, EdgeRadius)
Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, yes)
#end
#macro Round_Cone(PtA, RadiusA, PtB, RadiusB, EdgeRadius, UseMerge)
#if(min(RadiusA, RadiusB) < EdgeRadius)
#warning "\nRound_Cone() macro called with Radius < EdgeRadius,\nresults may not be as expected\n"
#end
#if(RadiusA > RadiusB)
#local RA = RadiusB;
#local RB = RadiusA;
#local PA = PtB;
#local PB = PtA;
#else
#local RA = RadiusA;
#local RB = RadiusB;
#local PA = PtA;
#local PB = PtB;
#end
#local Axis = vnormalize(PB - PA);
#local Len = VDist(PA, PB);
#local SA = atan2(RB - RA, Len);
#if(UseMerge)
merge {
#else
union {
#end
#local R1 = RA - EdgeRadius*tan(pi/4 - SA/2);
#local R2 = RB - EdgeRadius/tan(pi/4 - SA/2);
torus {R1, EdgeRadius
Point_At_Trans(Axis) translate PA + Axis*EdgeRadius
}
torus {R2, EdgeRadius
Point_At_Trans(Axis) translate PB - Axis*EdgeRadius
}
#local D1 = EdgeRadius - EdgeRadius*sin(SA);
#local D2 = EdgeRadius + EdgeRadius*sin(SA);
cone {
PA + Axis*D1, R1 + EdgeRadius*cos(SA),
PB - Axis*D2, R2 + EdgeRadius*cos(SA)
}
cone {PA, R1, PB, R2}
}
#end
// Cones with spherical caps
// Sphere-capped cone object with spheres centered on end points.
// Derived from Connect() macro by John VanSickle
#macro Round_Cone2_Union(PtA, RadiusA, PtB, RadiusB)
Round_Cone2(PtA, RadiusA, PtB, RadiusB, no)
#end
#macro Round_Cone2_Merge(PtA, RadiusA, PtB, RadiusB)
Round_Cone2(PtA, RadiusA, PtB, RadiusB, yes)
#end
#macro Round_Cone2(PtA, RadiusA, PtB, RadiusB, UseMerge)
#local Axis = PtB - PtA;
#local RadDif = RadiusA - RadiusB;
#local Len = VDist(PtA, PtB);
#local D2 = f_sqr(Len) - f_sqr(RadDif);
#if(D2<0)
#error "Round_Cone2() macro called with parameters that can't be handled correctly"
#end
#local D2 = sqrt(D2);
#if(UseMerge)
merge {
#else
union {
#end
sphere {PtA, RadiusA}
sphere {PtB, RadiusB}
cone {
PtA + Axis/Len*RadDif*RadiusA/Len, RadiusA*D2/Len,
PtB + Axis/Len*RadDif*RadiusB/Len, RadiusB*D2/Len
}
}
#end
// Sphere-capped cone object with spheres moved and resized
// to fit ends of cone.
// The cone portion is identical to what you would get using
// a cone object with the same parameters, but the spheres are
// not centered on the endpoints of the cone, but are moved
// to give a smooth transition with the surface
#macro Round_Cone3_Union(PtA, RadiusA, PtB, RadiusB)
Round_Cone3(PtA, RadiusA, PtB, RadiusB, no)
#end
#macro Round_Cone3_Merge(PtA, RadiusA, PtB, RadiusB)
Round_Cone3(PtA, RadiusA, PtB, RadiusB, yes)
#end
#macro Round_Cone3(PtA, RadiusA, PtB, RadiusB, UseMerge)
#local Axis = vnormalize(PtB - PtA);
#local Len = VDist(PtA, PtB);
#local SA = atan2(RadiusB - RadiusA, Len);
#if(UseMerge)
merge {
#else
union {
#end
cone {PtA, RadiusA, PtB, RadiusB}
sphere {PtA + Axis*tan(SA)*RadiusA, RadiusA/cos(SA)}
sphere {PtB + Axis*tan(SA)*RadiusB, RadiusB/cos(SA)}
}
#end
// Two-triangle quad
// A---B
// |\ |
// | \ |
// | \|
// D---C
#macro Quad(A, B, C, D)
triangle {A, B, C}
triangle {A, C, D}
#end
#macro Smooth_Quad(A, NA, B, NB, C, NC, D, ND)
smooth_triangle {A, NA, B, NB, C, NC}
smooth_triangle {A, NA, C, NC, D, ND}
#end
// HF Macros author: Rune S. Johansen
// Optimizations by: Wlodzimierz ABX Skiba
// There are several HF macros in shapes.inc, which generate meshes in various shapes.
// See more information in the help file.
#macro HF_Square (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,MnExt,MxExt)
#local WriteFile = (strlen(FileName) > 0);
#local xRes = (< 1, 1>*Res).x;
#local zRes = (< 1, 1>*Res).y;
#local UVheight = (UseUVheight=1);
#local UVtex = (UseUVtexture=1);
#local Smooth = (Smooth=1);
#local Ext = MxExt-MnExt;
// CALCULTION OF POINT GRID
// Note that the grid extents one element further in all directions
// if a smooth heightfield is calculated. This is to ensure correct
// normal calculation later on.
#local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
#local J = 1-Smooth;
#while (J<xRes+1+Smooth)
#local K = 1-Smooth;
#while (K<zRes+1+Smooth)
#local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;
#local P = (UV*Ext*<1,0,1> + MnExt);
#if (UVheight)
#local H = Function(UV.x, UV.z, 0);
#else
#local H = Function(P.x, P.y, P.z);
#end
#declare PArr[J][K] = P + H*Ext*y;
#declare K = K+1;
#end
#declare J = J+1;
#end
HFCreate_()
#end
#macro HF_Sphere (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,Center,Radius,Depth)
#local WriteFile = (strlen(FileName) > 0);
#local xRes = (< 1, 1>*Res).x;
#local zRes = (< 1, 1>*Res).y;
#local UVheight = (UseUVheight=1);
#local UVtex = (UseUVtexture=1);
#local Smooth = (Smooth=1);
// CALCULTION OF POINT GRID
// Note that the grid extents one element further in all directions
// if a smooth heightfield is calculated. This is to ensure correct
// normal calculation later on.
#local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
#local J = 1-Smooth;
#while (J<xRes+1+Smooth)
#local K = 1-Smooth;
#while (K<zRes+1+Smooth)
#local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;
#local Dir = vrotate( vrotate(x,(-89.9999+179.9998*UV.z)*z), -360*UV.x*y );
#local P = Center + Dir * Radius;
#if (UVheight)
#local H = Function(UV.x, UV.z, 0);
#else
#local H = Function(P.x, P.y, P.z);
#end
#declare PArr[J][K] = P + H*Dir*Depth;
#declare K = K+1;
#end
#declare J = J+1;
#end
HFCreate_()
#end
#macro HF_Cylinder (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,EndA,EndB,Radius,Depth)
#local WriteFile = (strlen(FileName) > 0);
#local xRes = (< 1, 1>*Res).x;
#local zRes = (< 1, 1>*Res).y;
#local UVheight = (UseUVheight=1);
#local UVtex = (UseUVtexture=1);
#local Smooth = (Smooth=1);
#local Axis = EndB-EndA;
#local Base = VPerp_To_Vector(Axis);
// CALCULTION OF POINT GRID
// Note that the grid extents one element further in all directions
// if a smooth heightfield is calculated. This is to ensure correct
// normal calculation later on.
#local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
#local J = 1-Smooth;
#while (J<xRes+1+Smooth)
#local K = 1-Smooth;
#while (K<zRes+1+Smooth)
#local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;
#local Dir = vaxis_rotate(Base,Axis,-360*UV.x-90);
#local P = EndA+Axis*UV.z+Dir*Radius;
#if (UVheight)
#local H = Function(UV.x, UV.z, 0);
#else
#local H = Function(P.x, P.y, P.z);
#end
#declare PArr[J][K] = P + H*Dir*Depth;
#declare K = K+1;
#end
#declare J = J+1;
#end
HFCreate_()
#end
#macro HF_Torus (Function,UseUVheight,UseUVtexture,Res,Smooth,FileName,Major,Minor,Depth)
#local WriteFile = (strlen(FileName) > 0);
#local xRes = (< 1, 1>*Res).x;
#local zRes = (< 1, 1>*Res).y;
#local UVheight = (UseUVheight=1);
#local UVtex = (UseUVtexture=1);
#local Smooth = (Smooth=1);
// CALCULTION OF POINT GRID
// Note that the grid extents one element further in all directions
// if a smooth heightfield is calculated. This is to ensure correct
// normal calculation later on.
#local PArr = array[xRes+1+Smooth][zRes+1+Smooth]
#local J = 1-Smooth;
#while (J<xRes+1+Smooth)
#local K = 1-Smooth;
#while (K<zRes+1+Smooth)
#local UV = <(J-1)/(xRes-1),0,(K-1)/(zRes-1)>;
#local Dir = vrotate(vrotate(-x,360*UV.z*z),-360*UV.x*y);
#local P = vrotate(Major*x,-360*UV.x*y)+Dir*Minor;
#if (UVheight)
#local H = Function(UV.x, UV.z, 0);
#else
#local H = Function(P.x, P.y, P.z);
#end
#declare PArr[J][K] = P + H*Dir*Depth;
#declare K = K+1;
#end
#declare J = J+1;
#end
HFCreate_()
#end
// Internal macro - not intended to be called by user.
#macro HFCreate_ ()
#if(WriteFile)
#fopen _HFMACRO_OUTPUT_FILE FileName write
#write(_HFMACRO_OUTPUT_FILE,"mesh2 {\nvertex_vectors {\n",xRes*zRes,
#else
mesh2 {vertex_vectors{xRes*zRes,
#end
#local J = 1;
#while (J<=xRes)
#local K = 1;
#while (K<=zRes)
#if(WriteFile)
",\n",PArr[J][K],
#else
PArr[J][K],
#end
#declare K = K+1;
#end
#declare J = J+1;
#end
#if(WriteFile)
"\n}\n")
#else
}
#end
#if (Smooth)
#if(WriteFile)
#write(_HFMACRO_OUTPUT_FILE,"normal_vectors {\n",xRes*zRes,
#else
normal_vectors{xRes*zRes,
#end
// CALCULATION OF NORMAL VECTOR
// We don't vnormalize the vectors from the current center point
// to its neightbor points because we want a weighted average
// where bigger areas contribute more. This also means that the
// center point can be left out completely of the calculations:
#local J = 1;
#while (J<=xRes)
#local K = 1;
#while (K<=zRes)
#if(WriteFile)
",\n",vnormalize(vcross(PArr[J][K+1]-PArr[J][K-1], PArr[J+1][K]-PArr[J-1][K])),
#else
vnormalize(vcross(PArr[J][K+1]-PArr[J][K-1], PArr[J+1][K]-PArr[J-1][K])),
#end
#declare K = K+1;
#end
#declare J = J+1;
#end
#if(WriteFile)
"\n}\n")
#else
}
#end
#end
#if (UVtex)
#if(WriteFile)
#write(_HFMACRO_OUTPUT_FILE,"uv_vectors {\n",xRes*zRes,
#else
uv_vectors{xRes*zRes,
#end
#local J = 1;
#while (J<=xRes)
#local K = 1;
#while (K<=zRes)
#if(WriteFile)
",\n",<(J-1)/(xRes-1),(K-1)/(zRes-1)>,
#else
<(J-1)/(xRes-1),(K-1)/(zRes-1)>,
#end
#declare K = K+1;
#end
#declare J = J+1;
#end
#if(WriteFile)
"\n}\n")
#else
}
#end
#end
#if(WriteFile)
#write(_HFMACRO_OUTPUT_FILE,"face_indices {\n",(xRes-1)*(zRes-1)*2,
#else
face_indices{(xRes-1)*(zRes-1)*2,
#end
#local F1 = <0,zRes,zRes+1>;
#local F2 = <0,zRes+1,1>;
#local J = 0;
#while (J<xRes-1)
#local A = J*zRes;
#while (mod(A+1,zRes))
#if(WriteFile)
",\n",F1+A,",\n",F2+A,
#else
F1+A, F2+A,
#end
#local A = A+1;
#end
#local J = J+1;
#end
#if (UVtex)
#if(WriteFile)
"\n}\nuv_mapping\n}")
#fclose _HFMACRO_OUTPUT_FILE
#else
} uv_mapping}
#end
#else
#if(WriteFile)
"\n}\n}")
#fclose _HFMACRO_OUTPUT_FILE
#else
}}
#end
#end
#end
#version Shapes_Inc_Temp;
#end//shapes.inc
|