This file is indexed.

/usr/share/doc/psi4/html/adc.html is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>ADC: Ab Initio Polarization Propagator &mdash; Psi4 [] Docs</title>
    
    <link rel="stylesheet" href="_static/psi4.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <link rel="stylesheet" href="./" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/jquery.cookie.js"></script>
    <script type="text/javascript" src="_static/toggle_sections.js"></script>
    <script type="text/javascript" src="_static/toggle_sidebar.js"></script>
    <script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
    <link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
    <link rel="top" title="Psi4 [] Docs" href="index.html" />
    <link rel="up" title="Theoretical Methods: SCF to FCI" href="methods.html" />
    <link rel="next" title="Geometry Optimization" href="optking.html" />
    <link rel="prev" title="SAPT: Symmetry-Adapted Perturbation Theory" href="sapt.html" /> 
  </head>
  <body role="document">
    <div class="relbar-top">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             accesskey="C">toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="optking.html" title="Geometry Optimization"
             accesskey="N">next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="sapt.html" title="SAPT: Symmetry-Adapted Perturbation Theory"
             accesskey="P">previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>

          <li class="nav-item nav-item-1"><a href="methods.html" accesskey="U">Theoretical Methods: SCF to FCI</a> &raquo;</li> 
      </ul>
    </div>
    </div>
  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<span class="target" id="index-0"></span><span class="target" id="index-1"></span><div class="section" id="adc-ab-initio-polarization-propagator">
<span id="sec-adc"></span><span id="index-2"></span><h1>ADC: Ab Initio Polarization Propagator<a class="headerlink" href="#adc-ab-initio-polarization-propagator" title="Permalink to this headline"></a></h1>
<p><em>Code author: Masaaki Saitow</em></p>
<p><em>Section author: Masaaki Saitow</em></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__adc.html#apdx-adc"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__adc.html#apdx-adc-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/adc">ADC</a></p>
<p>The ADC code seeks the pole structure of the polarization
propagator, which is equivalent to the correlated excitation energy,
in terms of the second order algebraic-diagrammatic construction
(ADC(2)) scheme.  Originally, the ADC scheme was derived in purely
the diagrammatic language by Schirmer <a class="reference internal" href="bibliography.html#schirmer-1982" id="id1">[Schirmer:1982]</a> and later,
a sophisticated algebraic scheme was developed <a class="reference internal" href="bibliography.html#trofimov-2006" id="id2">[Trofimov:2006]</a>
by Trofimov et al. In general by n-th order ADC theory, the
excited state is treated at completely equivalent level to the
Møller&#8211;Plesset perturbation expansion of the same order.
Hence the ADC(2)
can be described as MP2 theory for the excited state and the relation
to such other response theories as CC2-LR, CIS(D) and CIS(D:math:<cite>_n</cite>) has
been addressed <a class="reference internal" href="bibliography.html#haettig-2002" id="id3">[Haettig:2002]</a> by Hattig et al.  In the ADC theory,
the residue calculus of the propagator is translated into the eigenvalue
problem with respect to the correlated response matrix, also known as the
shifted-Hamiltonian. The σ-vectors (Hamiltonian-vector products)
are constructed several times in the simultaneous expansion method (SEM)
to solve the eigenvalue problem, and each σ-vector construction
has a computational cost that scales as <img class="math" src="_images/math/ba3bb4e90152921f5602f9ee346b254f2d1ccabf.png" alt="{\cal O}(N^5)" style="vertical-align: -4px"/>. In addition,
the tensorial form of the σ-vector resembles to that of the
doubles correction in the CIS(D) energetic equation. As a consequence,
the pre-factor in the polynomial scaling becomes far larger than that
of the CIS(D) even though the quasi-degeneracy of the excited state is
properly accounted for in the ADC(2) model.</p>
<p>In <span class="sc">Psi4</span> the quite efficient and flexible integral-transformation
library named libtrans is newly equipped and utilized in the
production level DCFT code. The ADC code is also based on
libtrans, and it is also based on libdpd, a library to
utilize molecular symmetry in the tensorial manipulations in framework
of the direct-product decomposition algorithm. By this feature, the Ritz
space and intermediate tensors are blocked according to the irreducible
representations of the point group, and the excited states that belong
to different symmetry are sought separately.</p>
<p>In the output of ADC, the ADC(2) results may look as follows:</p>
<div class="highlight-python"><div class="highlight"><pre>-&gt;  1 B1 state   :  0.2565095 (a.u.),  6.9799824 (eV)
Non-iterative:  0.2565636 (a.u.),  6.9814532 (eV)
         Occ Vir        Coefficient
---------------------------------------------
          3   0        -0.9017047264
          3   2         0.3038332241
          3   1         0.2907567119
          3   5        -0.0790167706
          3   4        -0.0425829926

Converged in   4 iteration.
Squared norm of the S component:  0.9315336
The S vector is rotated up to  8.102 (deg.)
</pre></div>
</div>
<p>in which the ADC(2) excitation energy is indicated with arrow symbol
and the pseudo-perturbative value, which is calculated in very similar
fashion to the CIS(D) energy, is also presented on the following line. In
this implementation, the ADC(2) secular matrix is treated effectively
by renormalization of the double excitation manifold into the single
excitation manifold. So, the effective secular equation is solved for
several times for the specific state due to the eigenvalue dependence of
the effective response matrix. Only the S component of the transition
amplitude is obtained explicitly and the squared norm of the S block
and the rotation angle from the corresponding CIS vector are given
below the element of the amplitude. The difference between the ADC(2)
value and its non-iterative counterpart is mostly negligible if the
mixture among the CIS excited states is small and the quasi-degeneracy
in the excited state is tolerably weak. But if there is a significant
discrepancy in these energies, or the rotation angle is visibly large,
special care may have to be taken for the strong effects caused by the
higher excited states.</p>
<div class="section" id="partial-renormalization-scheme">
<h2>Partial Renormalization Scheme<a class="headerlink" href="#partial-renormalization-scheme" title="Permalink to this headline"></a></h2>
<p>The ADC code is capable of performing the partially-renormalized
ADC(2) computation, termed PR-ADC(2). In the perturbative treatment of
the singly-excited state, the doubly and triply excited configurations
are accounted for as in the case of CIS(D). In the language of
CIS(D), the former is regarded to introduce the orbital relaxation (OR)
effect while the latter is argued to give rise to the differential
correlation (DC) correction to the excited state. In the PR-ADC(2)
scheme, the the DC term is corrected according to the ground state
PR-MP2 correlation, in which the correlation between the electron pairs
is accounted for in size-consistent and unitary-invariant fashion by
modulating the MP1 amplitude. By utilizing the <a class="reference internal" href="autodoc_glossary_options_c.html#term-pr-adc"><span class="xref std std-term">PR</span></a> scheme, substantial
resistance against quasi-degeneracy is readily granted as discussed
in Ref. <a class="reference internal" href="bibliography.html#saitow-2012" id="id4">[Saitow:2012]</a>.</p>
</div>
<div class="section" id="using-the-adc-2-code">
<h2>Using the ADC(2) code<a class="headerlink" href="#using-the-adc-2-code" title="Permalink to this headline"></a></h2>
<p>A complete list of keywords related to ADC(2) computations is provided in
Appendix <a class="reference internal" href="autodir_options_c/module__adc.html#apdx-adc"><span>ADC</span></a>.  Some sample inputs are provided in
<a class="reference external" href="https://github.com/psi4/psi4public/blob/master/samples">psi4/samples</a>, in directories starting with the name adc.  The most
important keyword is <a class="reference internal" href="autodoc_glossary_options_c.html#term-roots-per-irrep-adc"><span class="xref std std-term">ROOTS_PER_IRREP</span></a>, which is an array
giving the number of excited states desired for each irreducible
representation.</p>
</div>
<div class="section" id="implementation">
<h2>Implementation<a class="headerlink" href="#implementation" title="Permalink to this headline"></a></h2>
<p>Some very essential points are emphasized for understanding of the
nature and the limitations of the theory. The ADC(2) response matrix,
denoted as <img class="math" src="_images/math/66870aee84e059d9b53df3274025bc20244eb700.png" alt="\mathbf{A}" style="vertical-align: -1px"/>, is expanded in the single (S) and double (D)
excitation manifolds as</p>
<div class="math">
<p><img src="_images/math/aa76bd767135b229a43ff46a406c3a939a209e8a.png" alt="\begin{pmatrix}
\mathbf{A_{SS}^{(2)}} &amp; \mathbf{A_{SD}^{(1)}}\\
\mathbf{A_{DS}^{(1)}} &amp; \mathbf{A_{DD}^{(0)}}
\end{pmatrix}
\begin{pmatrix}
\mathbf{X_S}\\
\mathbf{X_D}
\end{pmatrix}
=\omega
\begin{pmatrix}
\mathbf{X_S}\\
\mathbf{X_D}
\end{pmatrix}"/></p>
</div><p>where the superscript on each matrix block indicates the order of
the fluctuation. Instead of solving the above equation explicitly,
the large D manifold is treated effectively as</p>
<div class="math">
<p><img src="_images/math/7b3028ef145987190e52d6585f72db7551b0580b.png" alt="[\mathbf{A_{SS}^{(2)}}+
\mathbf{A_{SD}^{(1)}}^{\dagger}(\omega-
\mathbf{A_{DD}^{(0)}})^{-1}\mathbf{A_{DS}^{(1)}}]\mathbf{X_{S}}=
\omega\mathbf{X_{S}}."/></p>
</div><p>This form of the ADC(2) equation requires 7 &#8211; 10 iterations for
convergence on only one root. But thanks to Newton-Raphson
acceleration,</p>
<div class="math">
<p><img src="_images/math/dab89116710268d3223d5f11ac4b2ba8fa50fbef.png" alt="\omega^{n+1}=\omega^{n}-
\frac{\omega^n-\mathbf{X_{S}}(\omega^n)^{\dagger}
[\mathbf{A_{SS}^{(2)}}+
\mathbf{A_{SD}^{(1)}}^{\dagger}(\omega^n-\mathbf{A_{DD}^{(0)}})^{-1}
\mathbf{A_{DS}^{(1)}}]\mathbf{X_{S}}(\omega^n)}{1+\mathbf{X_{S}}
(\omega^n)^{\dagger}[\mathbf{A_{SD}^{(1)}}^{\dagger}
(\omega^n-\mathbf{A_{DD}^{(0)}})^{-2}\mathbf{A_{DS}^{(1)}}]\mathbf{X_{S}}
(\omega^n)}"/></p>
</div><p>the computational time reduces to shorter than half of the simple iterative
procedure. Construction of the denominator of the second term in the above
equation is less computationally expensive than contruction of one $sigma$-vector with respect to the effective response matrix. The non-iterative excitation energy stated above is calculated as a diagonal element of the Davidson mini-Hamiltonian matrix in the SEM as,</p>
<div class="math">
<p><img src="_images/math/059c973cb87bc9c9209c8ca465649b917e16583e.png" alt="\omega^{Non-Iterative}=
\mathbf{X_{CIS}}^{\dagger}[\mathbf{A_{SS}^{(2)}}+
\mathbf{A_{SD}^{(1)}}^{\dagger}(\omega^{CIS}-\mathbf{A_{DD}^{(0)}})^{-1}
\mathbf{A_{DS}^{(1)}}]\mathbf{X_{CIS}}"/></p>
</div><p>where <img class="math" src="_images/math/bafd7cfe8d1d643441371b8131f9911aa6f83dce.png" alt="\omega^{CIS}" style="vertical-align: 0px"/> and <img class="math" src="_images/math/e92644fd60ffb5d461cc8fa76ca44d2c695cc769.png" alt="\mathbf{X_{CIS}}" style="vertical-align: -4px"/> denote the CIS
excitation energy and wave function, respectively. The explicit form of the
σ-vector is provided in a note accompanying the source code,
in the file <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/adc/sigma.pdf">psi4/src/bin/adc/sigma.pdf</a>.</p>
<style type="text/css"><!--
 .green {color: red;}
 .sc {font-variant: small-caps;}
 --></style></div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">ADC: Ab Initio Polarization Propagator</a><ul>
<li><a class="reference internal" href="#partial-renormalization-scheme">Partial Renormalization Scheme</a></li>
<li><a class="reference internal" href="#using-the-adc-2-code">Using the ADC(2) code</a></li>
<li><a class="reference internal" href="#implementation">Implementation</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="sapt.html"
                        title="previous chapter">SAPT: Symmetry-Adapted Perturbation Theory</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="optking.html"
                        title="next chapter">Geometry Optimization</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/adc.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="relbar-bottom">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             >toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="optking.html" title="Geometry Optimization"
             >next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="sapt.html" title="SAPT: Symmetry-Adapted Perturbation Theory"
             >previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>

          <li class="nav-item nav-item-1"><a href="methods.html" >Theoretical Methods: SCF to FCI</a> &raquo;</li> 
      </ul>
    </div>
    </div>

    <div class="footer" role="contentinfo">
        &copy; Copyright 2015, The Psi4 Project.
      Last updated on Tuesday, 12 January 2016 03:10PM.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
    </div>
    <!-- cloud_sptheme 1.3 -->
  </body>
</html>