/usr/share/doc/psi4/html/cc.html is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>CC: Coupled Cluster Methods — Psi4 [] Docs</title>
<link rel="stylesheet" href="_static/psi4.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="./" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/jquery.cookie.js"></script>
<script type="text/javascript" src="_static/toggle_sections.js"></script>
<script type="text/javascript" src="_static/toggle_sidebar.js"></script>
<script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
<link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
<link rel="top" title="Psi4 [] Docs" href="index.html" />
<link rel="up" title="Theoretical Methods: SCF to FCI" href="methods.html" />
<link rel="next" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4" href="fnocc.html" />
<link rel="prev" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory" href="dfmp2.html" />
</head>
<body role="document">
<div class="relbar-top">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
accesskey="C">toc</a> </li>
<li class="right" >
<a href="fnocc.html" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4"
accesskey="N">next</a> </li>
<li class="right" >
<a href="dfmp2.html" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory"
accesskey="P">previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" accesskey="U">Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<div class="section" id="cc-coupled-cluster-methods">
<span id="sec-cc"></span><span id="index-0"></span><h1>CC: Coupled Cluster Methods<a class="headerlink" href="#cc-coupled-cluster-methods" title="Permalink to this headline">¶</a></h1>
<p><em>Code author: T. Daniel Crawford</em></p>
<p><em>Section author: T. Daniel Crawford</em></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccenergy.html#apdx-ccenergy"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccenergy.html#apdx-ccenergy-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccenergy">CCENERGY</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cceom.html#apdx-cceom"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__cceom.html#apdx-cceom-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cceom">CCEOM</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccresponse.html#apdx-ccresponse"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccresponse.html#apdx-ccresponse-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccresponse">CCRESPONSE</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cctriples.html#apdx-cctriples"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__cctriples.html#apdx-cctriples-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cctriples">CCTRIPLES</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccdensity.html#apdx-ccdensity"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccdensity.html#apdx-ccdensity-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccdensity">CCDENSITY</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cchbar.html#apdx-cchbar"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cchbar">CCHBAR</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cclambda.html#apdx-cclambda"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cclambda">CCLAMBDA</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccsort.html#apdx-ccsort"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccsort">CCSORT</a></p>
<p>The coupled cluster approach is one of the most accurate and reliable quantum
chemical techniques for including the effects of electron correlation.
Instead of the linear expansion of the wavefunction used by configuation
interaction, coupled cluster uses an exponential expansion,</p>
<div class="math" id="equation-CCexpansion">
<p><span class="eqno">(1)</span><img src="_images/math/0b2ae41a1f29d4235f422375be3d4d67d7e6bd11.png" alt="| \Psi \rangle &= e^{\hat{T}} | \Phi_0 \rangle \\
&= \left( 1 + {\hat{T}} + \frac{1}{2} {\hat{T}}^2 + \frac{1}{3!}{\hat{T}}^3 + \cdots \right) | \Phi_0 \rangle,"/></p>
</div><p>where the cluster operator <img class="math" src="_images/math/7503b3bcb0f6a7d712e2639b2040aa4379553998.png" alt="{\hat{T}}" style="vertical-align: 0px"/> is written as a sum of operators that
generate singly-excited, doubly-excited, <em>etc.</em>, determinants:</p>
<div class="math">
<p><img src="_images/math/59ae6fdb4e708cad9483f2e69fd8405f0f81fbeb.png" alt="{\hat{T}} = {\hat{T}_1} + {\hat{T}_2} + {\hat{T}_3} + \cdots + {\hat{T}_N},"/></p>
</div><p>with</p>
<div class="math">
<p><img src="_images/math/0b18a904539a4c993757074b67101ba6e5dd28a4.png" alt="{\hat T}_1 | \Phi_0 \rangle &= \sum_{i}^{\rm occ} \sum_a^{\rm vir} t_i^a | \Phi_i^a \rangle \\
{\hat T}_2 | \Phi_0 \rangle &= \sum_{i<j}^{\rm occ} \sum_{a<b}^{\rm vir} t_{ij}^{ab} | \Phi_{ij}^{ab} \rangle,"/></p>
</div><p><em>etc.</em> The popular coupled cluster singles and doubles (CCSD) model
<a class="reference internal" href="bibliography.html#purvis-1982" id="id1">[Purvis:1982]</a> truncates the expansion at <img class="math" src="_images/math/8e4a190250adf32756c50d00a3013b8251e9d03f.png" alt="{\hat{T}} = {\hat{T}_1}
+ {\hat{T}_2}" style="vertical-align: -4px"/>. This model has the same number of parameters as
configuration interaction singles and doubles (CISD) but improves upon
it by approximately accounting for higher-order terms using products
of lower-order terms (<em>e.g.</em>, the term <img class="math" src="_images/math/b2d34e3d8e675feb127ea2791c8a84589b232f7c.png" alt="{\hat{T}_2}^2" style="vertical-align: -5px"/> approximately
accounts for quadruple excitations). The inclusion of such products
makes coupled-cluster methods <em>size extensive</em>, meaning that the
quality of the computation should not degrade for larger molecules.
The computational cost for CCSD scales as <img class="math" src="_images/math/35993be5fa2f2a1e51bf13da3a469ac8b3f4a518.png" alt="{\cal{O}}(o^2 v^4)" style="vertical-align: -4px"/>, where
<img class="math" src="_images/math/38732d488ba22c7cdf11ae43fe5953bcb317e065.png" alt="o" style="vertical-align: 0px"/> is the number of occupied orbitals and <img class="math" src="_images/math/cf4c2f9cafb5b0074abef55afea9b0f5802b349a.png" alt="v" style="vertical-align: 0px"/> is the number of virtual
orbitals.</p>
<p>Improving upon CCSD, the CCSD(T) method <a class="reference internal" href="bibliography.html#raghavachari-1989" id="id2">[Raghavachari:1989]</a> includes
a perturbative estimate of the energy contributed by the <img class="math" src="_images/math/b23f8b63905a7283d498ba6e84f3bf7d1bd38cdf.png" alt="{\hat{T}_3}" style="vertical-align: -3px"/>
operator. The computational cost of this additional term scales as
<img class="math" src="_images/math/d30aae20ec1dd50ca4bfff8d835e41131215bbaf.png" alt="{\cal{O}}(o^3 v^4)" style="vertical-align: -4px"/>, making it rather expensive for molecules with more than
a dozen heavy atoms or so. However, when this method is affordable, it
provides very high quality results in most cases.</p>
<p><span class="sc">Psi4</span> is capable of computing energies and analytic gradients for a
number of coupled cluster models. It can also compute linear response
properties (such as static or frequency-dependent polarizability,
or optical rotation angles) for some models. Excited states can
also be computed by the CC2 and CC3 models, or by EOM-CCSD. Table
<a class="reference internal" href="#table-ccsummary"><span>CC Methods</span></a> summarizes these capabilities. This section
describes how to carry out coupled cluster calculations within <span class="sc">Psi4</span>.
For higher-order coupled-cluster methods like CCSDT and CCSDTQ, <span class="sc">Psi4</span>
can interface to Kállay’s MRCC code (see <a class="reference internal" href="mrcc.html#sec-mrcc"><span>MRCC</span></a>).</p>
<table border="1" class="docutils" id="id3">
<span id="table-ccsummary"></span><caption><span class="caption-text">Current coupled cluster capabilities of <span class="sc">Psi4</span></span><a class="headerlink" href="#id3" title="Permalink to this table">¶</a></caption>
<colgroup>
<col width="20%" />
<col width="16%" />
<col width="15%" />
<col width="15%" />
<col width="20%" />
<col width="15%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Method</th>
<th class="head">Reference</th>
<th class="head">Energy</th>
<th class="head">Gradient</th>
<th class="head">Exc. Energies</th>
<th class="head">LR Props</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td rowspan="3">CC2</td>
<td>RHF</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>—</td>
<td>N</td>
<td>—</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>—</td>
<td>N</td>
<td>—</td>
</tr>
<tr class="row-odd"><td rowspan="3">CCSD</td>
<td>RHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr class="row-even"><td>UHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>—</td>
</tr>
<tr class="row-odd"><td>ROHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>—</td>
</tr>
<tr class="row-even"><td rowspan="3">CCSD(T)</td>
<td>RHF</td>
<td>Y</td>
<td>—</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>—</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-odd"><td>a-CCSD(T)</td>
<td>RHF</td>
<td>Y</td>
<td>—</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-even"><td rowspan="3">CC3</td>
<td>RHF</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>—</td>
<td>Y</td>
<td>—</td>
</tr>
<tr class="row-odd"><td>CCD</td>
<td>Brueckner</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr class="row-even"><td>CCD(T)</td>
<td>Brueckner</td>
<td>Y</td>
<td>N</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
<p>The following wavefunctions are currently recognized by <span class="sc">Psi4</span> as arguments
to functions like <a class="reference internal" href="energy.html#driver.energy" title="driver.energy"><code class="xref py py-func docutils literal"><span class="pre">energy()</span></code></a>: <code class="docutils literal"><span class="pre">'ccsd'</span></code>, <code class="docutils literal"><span class="pre">'ccsd(t)'</span></code>, <code class="docutils literal"><span class="pre">'a-ccsd(t)'</span></code>, <code class="docutils literal"><span class="pre">'cc2'</span></code>,
<code class="docutils literal"><span class="pre">'cc3'</span></code>, <code class="docutils literal"><span class="pre">'bccd'</span></code> (CCD with Brueckner orbitals), <code class="docutils literal"><span class="pre">'bccd(t)'</span></code> (CCD(T) with
Brueckner orbitals), <code class="docutils literal"><span class="pre">'eom-ccsd'</span></code>, <code class="docutils literal"><span class="pre">'eom-cc2'</span></code> (CC2 for excited states),
<code class="docutils literal"><span class="pre">'eom-cc3'</span></code> (CC3 for excited states). Response properties can be obtained
by calling the function <a class="reference internal" href="prop.html#driver.property" title="driver.property"><code class="xref py py-func docutils literal"><span class="pre">property()</span></code></a> (instead of, for example, <a class="reference internal" href="energy.html#driver.energy" title="driver.energy"><code class="xref py py-func docutils literal"><span class="pre">energy()</span></code></a>,
<em>e.g.</em>, <code class="docutils literal"><span class="pre">property('ccsd')</span></code>. There are many sample
coupled cluster inputs provided in <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/samples">psi4/samples</a>.</p>
<div class="section" id="basic-keywords">
<h2>Basic Keywords<a class="headerlink" href="#basic-keywords" title="Permalink to this headline">¶</a></h2>
<p>A complete list of keywords related to coupled-cluster computations is
provided in the appendices, with the majority of the relevant
keywords appearing in Appendix <a class="reference internal" href="autodir_options_c/module__ccenergy.html#apdx-ccenergy"><span>CCENERGY</span></a>. For a standard ground-state
CCSD or CCSD(T) computation, the following keywords are common:</p>
<div class="section" id="reference">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-reference-ccenergy"><span class="xref std std-term">REFERENCE</span></a><a class="headerlink" href="#reference" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Reference wavefunction type</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: RHF, ROHF, UHF</li>
<li><strong>Default</strong>: RHF</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="r-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-r-convergence-ccenergy"><span class="xref std std-term">R_CONVERGENCE</span></a><a class="headerlink" href="#r-convergence" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Convergence criterion for wavefunction (change) in CC amplitude equations.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-7</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="maxiter">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-maxiter-ccenergy"><span class="xref std std-term">MAXITER</span></a><a class="headerlink" href="#maxiter" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Maximum number of iterations to solve the CC equations</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 50</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="brueckner-orbs-r-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-brueckner-orbs-r-convergence-ccenergy"><span class="xref std std-term">BRUECKNER_ORBS_R_CONVERGENCE</span></a><a class="headerlink" href="#brueckner-orbs-r-convergence" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Convergence criterion for Breuckner orbitals. The convergence is determined based on the largest <img class="math" src="_images/math/16e357c096eed77674eca8ab99e4f7ede9e35081.png" alt="T_1" style="vertical-align: -4px"/> amplitude. Default adjusts depending on <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-ccenergy"><span class="xref std std-term">E_CONVERGENCE</span></a></p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-5</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="restart">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-restart-ccenergy"><span class="xref std std-term">RESTART</span></a><a class="headerlink" href="#restart" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Do restart the coupled-cluster iterations from old <img class="math" src="_images/math/af5a28ca8a321b443076a2fa13d823926ea6a26e.png" alt="t_1" style="vertical-align: -4px"/> and <img class="math" src="_images/math/fe8ef6267f2e4c6ecf2c54fa699f7499c89df730.png" alt="t_2" style="vertical-align: -3px"/> amplitudes? For geometry optimizations, Brueckner calculations, etc. the iterative solution of the CC amplitude equations may benefit considerably by reusing old vectors as initial guesses. Assuming that the MO phases remain the same between updates, the CC codes will, by default, re-use old vectors, unless the user sets RESTART = false.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: true</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="cachelevel">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-cachelevel-ccenergy"><span class="xref std std-term">CACHELEVEL</span></a><a class="headerlink" href="#cachelevel" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Cacheing level for libdpd governing the storage of amplitudes, integrals, and intermediates in the CC procedure. A value of 0 retains no quantities in cache, while a level of 6 attempts to store all quantities in cache. For particularly large calculations, a value of 0 may help with certain types of memory problems. The default is 2, which means that all four-index quantites with up to two virtual-orbital indices (e.g., <img class="math" src="_images/math/0eacf12eaa57c36e9c0b58407a3a73efdcbeca3e.png" alt="\langle ij | ab \rangle>" style="vertical-align: -5px"/> integrals) may be held in the cache.</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 2</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="cachetype">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-cachetype-ccenergy"><span class="xref std std-term">CACHETYPE</span></a><a class="headerlink" href="#cachetype" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Selects the priority type for maintaining the automatic memory cache used by the libdpd codes. A value of <code class="docutils literal"><span class="pre">LOW</span></code> selects a “low priority” scheme in which the deletion of items from the cache is based on pre-programmed priorities. A value of LRU selects a “least recently used” scheme in which the oldest item in the cache will be the first one deleted.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: LOW, LRU</li>
<li><strong>Default</strong>: LOW</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="num-amps-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-num-amps-print-ccenergy"><span class="xref std std-term">NUM_AMPS_PRINT</span></a><a class="headerlink" href="#num-amps-print" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Number of important <img class="math" src="_images/math/af5a28ca8a321b443076a2fa13d823926ea6a26e.png" alt="t_1" style="vertical-align: -4px"/> and <img class="math" src="_images/math/fe8ef6267f2e4c6ecf2c54fa699f7499c89df730.png" alt="t_2" style="vertical-align: -3px"/> amplitudes to print</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 10</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="mp2-amps-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-mp2-amps-print-ccenergy"><span class="xref std std-term">MP2_AMPS_PRINT</span></a><a class="headerlink" href="#mp2-amps-print" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Do print the MP2 amplitudes which are the starting guesses for RHF and UHF reference functions?</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: false</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="larger-calculations">
<h2>Larger Calculations<a class="headerlink" href="#larger-calculations" title="Permalink to this headline">¶</a></h2>
<p>Here are a few recommendations for carrying out large-basis-set coupled
cluster calculations with <span class="sc">Psi4</span>:</p>
<ul class="simple">
<li>In most cases it is reasonable to set the <code class="docutils literal"><span class="pre">memory</span></code> keyword to 90% of
the available physical memory, at most. There is a small amount of overhead
associated with the
coupled cluster modules that is not accounted for by the internal CC memory
handling routines. Thus, the user should <em>not</em> specify the entire
physical memory of the system, or swapping is likely. However, for especially large
calculations, it is better to set the <code class="docutils literal"><span class="pre">memory</span></code> keyword to a value less than 16 GB.</li>
<li>Set the <a class="reference internal" href="autodoc_glossary_options_c.html#term-cachelevel-ccenergy"><span class="xref std std-term">CACHELEVEL</span></a> keyword to <code class="docutils literal"><span class="pre">0</span></code>.
This will turn off cacheing, which, for very large calculations, can
lead to heap fragmentation and memory faults, even when sufficient
physical memory exists.</li>
<li>Set the <a class="reference internal" href="autodoc_glossary_options_c.html#term-print-globals"><span class="xref std std-term">PRINT</span></a> keyword to <code class="docutils literal"><span class="pre">2</span></code>. This
will help narrow where memory bottlenecks or other errors exist in the
event of a crash.</li>
</ul>
</div>
<div class="section" id="excited-state-coupled-cluster-calculations">
<span id="sec-eomcc"></span><h2>Excited State Coupled Cluster Calculations<a class="headerlink" href="#excited-state-coupled-cluster-calculations" title="Permalink to this headline">¶</a></h2>
<p>A complete list of keywords related to
coupled cluster linear response is provided in Appendix <a class="reference internal" href="autodir_options_c/module__cceom.html#apdx-cceom"><span>CCEOM</span></a>.
The most important keywords associated with EOM-CC calculations are:</p>
<div class="section" id="roots-per-irrep">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-roots-per-irrep-cceom"><span class="xref std std-term">ROOTS_PER_IRREP</span></a><a class="headerlink" href="#roots-per-irrep" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Number of excited states per irreducible representation for EOM-CC and CC-LR calculations. Irreps denote the final state symmetry, not the symmetry of the transition.</p>
<ul class="simple">
<li><strong>Type</strong>: array</li>
<li><strong>Default</strong>: No Default</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="e-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-cceom"><span class="xref std std-term">E_CONVERGENCE</span></a><a class="headerlink" href="#e-convergence" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Convergence criterion for excitation energy (change) in the Davidson algorithm for CC-EOM. See Table <a class="reference internal" href="scf.html#table-conv-corl"><span>Post-SCF Convergence</span></a> for default convergence criteria for different calculation types.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-6</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="singles-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-singles-print-cceom"><span class="xref std std-term">SINGLES_PRINT</span></a><a class="headerlink" href="#singles-print" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Do print information on the iterative solution to the single-excitation EOM-CC problem used as a guess to full EOM-CC?</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: false</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="schmidt-add-residual-tolerance">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-schmidt-add-residual-tolerance-cceom"><span class="xref std std-term">SCHMIDT_ADD_RESIDUAL_TOLERANCE</span></a><a class="headerlink" href="#schmidt-add-residual-tolerance" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Minimum absolute value above which a guess vector to a root is added to the Davidson algorithm in the EOM-CC iterative procedure.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-3</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="eom-guess">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-eom-guess-cceom"><span class="xref std std-term">EOM_GUESS</span></a><a class="headerlink" href="#eom-guess" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Specifies a set of single-excitation guess vectors for the EOM-CC procedure. If EOM_GUESS = <code class="docutils literal"><span class="pre">SINGLES</span></code>, the guess will be taken from the singles-singles block of the similarity-transformed Hamiltonian, Hbar. If EOM_GUESS = <code class="docutils literal"><span class="pre">DISK</span></code>, guess vectors from a previous computation will be read from disk. If EOM_GUESS = <code class="docutils literal"><span class="pre">INPUT</span></code>, guess vectors will be specified in user input. The latter method is not currently available.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: SINGLES, DISK, INPUT</li>
<li><strong>Default</strong>: SINGLES</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="linear-response-cclr-calculations">
<h2>Linear Response (CCLR) Calculations<a class="headerlink" href="#linear-response-cclr-calculations" title="Permalink to this headline">¶</a></h2>
<p>Linear response computations are invoked like <code class="docutils literal"><span class="pre">property('ccsd')</span></code>
or <code class="docutils literal"><span class="pre">property('cc2')</span></code>, along with a list of requested properties.
A complete list of keywords related to
coupled cluster linear response is provided in Appendix <a class="reference internal" href="autodir_options_c/module__ccresponse.html#apdx-ccresponse"><span>CCRESPONSE</span></a>.</p>
<p>The most important keywords associated with CC-LR calculations are as follows.</p>
<div class="section" id="property">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-property-ccresponse"><span class="xref std std-term">PROPERTY</span></a><a class="headerlink" href="#property" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>The response property desired. Acceptable values are <code class="docutils literal"><span class="pre">POLARIZABILITY</span></code> (default) for dipole-polarizabilities, <code class="docutils literal"><span class="pre">ROTATION</span></code> for specific rotations, <code class="docutils literal"><span class="pre">ROA</span></code> for Raman Optical Activity (<code class="docutils literal"><span class="pre">ROA_TENSOR</span></code> for each displacement), and <code class="docutils literal"><span class="pre">ALL</span></code> for all of the above.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: POLARIZABILITY, ROTATION, ROA, ROA_TENSOR, ALL</li>
<li><strong>Default</strong>: POLARIZABILITY</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="omega">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-omega-ccresponse"><span class="xref std std-term">OMEGA</span></a><a class="headerlink" href="#omega" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Array that specifies the desired frequencies of the incident radiation field in CCLR calculations. If only one element is given, the units will be assumed to be atomic units. If more than one element is given, then the units must be specified as the final element of the array. Acceptable units are <code class="docutils literal"><span class="pre">HZ</span></code>, <code class="docutils literal"><span class="pre">NM</span></code>, <code class="docutils literal"><span class="pre">EV</span></code>, and <code class="docutils literal"><span class="pre">AU</span></code>.</p>
<ul class="simple">
<li><strong>Type</strong>: array</li>
<li><strong>Default</strong>: No Default</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="gauge">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-gauge-ccresponse"><span class="xref std std-term">GAUGE</span></a><a class="headerlink" href="#gauge" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Specifies the choice of representation of the electric dipole operator. Acceptable values are <code class="docutils literal"><span class="pre">LENGTH</span></code> for the usual length-gauge representation, <code class="docutils literal"><span class="pre">VELOCITY</span></code> for the modified velocity-gauge representation in which the static-limit optical rotation tensor is subtracted from the frequency- dependent tensor, or <code class="docutils literal"><span class="pre">BOTH</span></code>. Note that, for optical rotation calculations, only the choices of <code class="docutils literal"><span class="pre">VELOCITY</span></code> or <code class="docutils literal"><span class="pre">BOTH</span></code> will yield origin-independent results.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: LENGTH, VELOCITY, BOTH</li>
<li><strong>Default</strong>: LENGTH</li>
</ul>
</div></blockquote>
<style type="text/css"><!--
.green {color: red;}
.sc {font-variant: small-caps;}
--></style></div>
</div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">CC: Coupled Cluster Methods</a><ul>
<li><a class="reference internal" href="#basic-keywords">Basic Keywords</a><ul>
<li><a class="reference internal" href="#reference"><code class="docutils literal"><span class="pre">REFERENCE</span></code></a></li>
<li><a class="reference internal" href="#r-convergence"><code class="docutils literal"><span class="pre">R_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#maxiter"><code class="docutils literal"><span class="pre">MAXITER</span></code></a></li>
<li><a class="reference internal" href="#brueckner-orbs-r-convergence"><code class="docutils literal"><span class="pre">BRUECKNER_ORBS_R_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#restart"><code class="docutils literal"><span class="pre">RESTART</span></code></a></li>
<li><a class="reference internal" href="#cachelevel"><code class="docutils literal"><span class="pre">CACHELEVEL</span></code></a></li>
<li><a class="reference internal" href="#cachetype"><code class="docutils literal"><span class="pre">CACHETYPE</span></code></a></li>
<li><a class="reference internal" href="#num-amps-print"><code class="docutils literal"><span class="pre">NUM_AMPS_PRINT</span></code></a></li>
<li><a class="reference internal" href="#mp2-amps-print"><code class="docutils literal"><span class="pre">MP2_AMPS_PRINT</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#larger-calculations">Larger Calculations</a></li>
<li><a class="reference internal" href="#excited-state-coupled-cluster-calculations">Excited State Coupled Cluster Calculations</a><ul>
<li><a class="reference internal" href="#roots-per-irrep"><code class="docutils literal"><span class="pre">ROOTS_PER_IRREP</span></code></a></li>
<li><a class="reference internal" href="#e-convergence"><code class="docutils literal"><span class="pre">E_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#singles-print"><code class="docutils literal"><span class="pre">SINGLES_PRINT</span></code></a></li>
<li><a class="reference internal" href="#schmidt-add-residual-tolerance"><code class="docutils literal"><span class="pre">SCHMIDT_ADD_RESIDUAL_TOLERANCE</span></code></a></li>
<li><a class="reference internal" href="#eom-guess"><code class="docutils literal"><span class="pre">EOM_GUESS</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#linear-response-cclr-calculations">Linear Response (CCLR) Calculations</a><ul>
<li><a class="reference internal" href="#property"><code class="docutils literal"><span class="pre">PROPERTY</span></code></a></li>
<li><a class="reference internal" href="#omega"><code class="docutils literal"><span class="pre">OMEGA</span></code></a></li>
<li><a class="reference internal" href="#gauge"><code class="docutils literal"><span class="pre">GAUGE</span></code></a></li>
</ul>
</li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="dfmp2.html"
title="previous chapter">DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="fnocc.html"
title="next chapter">FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/cc.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="relbar-bottom">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
>toc</a> </li>
<li class="right" >
<a href="fnocc.html" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4"
>next</a> </li>
<li class="right" >
<a href="dfmp2.html" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory"
>previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" >Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="footer" role="contentinfo">
© Copyright 2015, The Psi4 Project.
Last updated on Tuesday, 12 January 2016 03:10PM.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
</div>
<!-- cloud_sptheme 1.3 -->
</body>
</html>
|