This file is indexed.

/usr/share/doc/psi4/html/cc.html is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>CC: Coupled Cluster Methods &mdash; Psi4 [] Docs</title>
    
    <link rel="stylesheet" href="_static/psi4.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <link rel="stylesheet" href="./" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/jquery.cookie.js"></script>
    <script type="text/javascript" src="_static/toggle_sections.js"></script>
    <script type="text/javascript" src="_static/toggle_sidebar.js"></script>
    <script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
    <link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
    <link rel="top" title="Psi4 [] Docs" href="index.html" />
    <link rel="up" title="Theoretical Methods: SCF to FCI" href="methods.html" />
    <link rel="next" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4" href="fnocc.html" />
    <link rel="prev" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory" href="dfmp2.html" /> 
  </head>
  <body role="document">
    <div class="relbar-top">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             accesskey="C">toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="fnocc.html" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4"
             accesskey="N">next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="dfmp2.html" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory"
             accesskey="P">previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>

          <li class="nav-item nav-item-1"><a href="methods.html" accesskey="U">Theoretical Methods: SCF to FCI</a> &raquo;</li> 
      </ul>
    </div>
    </div>
  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<div class="section" id="cc-coupled-cluster-methods">
<span id="sec-cc"></span><span id="index-0"></span><h1>CC: Coupled Cluster Methods<a class="headerlink" href="#cc-coupled-cluster-methods" title="Permalink to this headline"></a></h1>
<p><em>Code author: T. Daniel Crawford</em></p>
<p><em>Section author: T. Daniel Crawford</em></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccenergy.html#apdx-ccenergy"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccenergy.html#apdx-ccenergy-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccenergy">CCENERGY</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cceom.html#apdx-cceom"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__cceom.html#apdx-cceom-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cceom">CCEOM</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccresponse.html#apdx-ccresponse"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccresponse.html#apdx-ccresponse-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccresponse">CCRESPONSE</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cctriples.html#apdx-cctriples"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__cctriples.html#apdx-cctriples-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cctriples">CCTRIPLES</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccdensity.html#apdx-ccdensity"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__ccdensity.html#apdx-ccdensity-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccdensity">CCDENSITY</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cchbar.html#apdx-cchbar"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cchbar">CCHBAR</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__cclambda.html#apdx-cclambda"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/cclambda">CCLAMBDA</a></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__ccsort.html#apdx-ccsort"><span>Keywords</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/ccsort">CCSORT</a></p>
<p>The coupled cluster approach is one of the most accurate and reliable quantum
chemical techniques for including the effects of electron correlation.
Instead of the linear expansion of the wavefunction used by configuation
interaction, coupled cluster uses an exponential expansion,</p>
<div class="math" id="equation-CCexpansion">
<p><span class="eqno">(1)</span><img src="_images/math/0b2ae41a1f29d4235f422375be3d4d67d7e6bd11.png" alt="| \Psi \rangle &amp;= e^{\hat{T}} | \Phi_0 \rangle \\
               &amp;= \left( 1 + {\hat{T}} + \frac{1}{2} {\hat{T}}^2 + \frac{1}{3!}{\hat{T}}^3 + \cdots \right) | \Phi_0 \rangle,"/></p>
</div><p>where the cluster operator <img class="math" src="_images/math/7503b3bcb0f6a7d712e2639b2040aa4379553998.png" alt="{\hat{T}}" style="vertical-align: 0px"/> is written as a sum of operators that
generate singly-excited, doubly-excited, <em>etc.</em>, determinants:</p>
<div class="math">
<p><img src="_images/math/59ae6fdb4e708cad9483f2e69fd8405f0f81fbeb.png" alt="{\hat{T}} = {\hat{T}_1} + {\hat{T}_2} + {\hat{T}_3} + \cdots + {\hat{T}_N},"/></p>
</div><p>with</p>
<div class="math">
<p><img src="_images/math/0b18a904539a4c993757074b67101ba6e5dd28a4.png" alt="{\hat T}_1 | \Phi_0 \rangle &amp;= \sum_{i}^{\rm occ} \sum_a^{\rm vir} t_i^a | \Phi_i^a \rangle \\
{\hat T}_2 | \Phi_0 \rangle &amp;= \sum_{i&lt;j}^{\rm occ} \sum_{a&lt;b}^{\rm vir} t_{ij}^{ab} | \Phi_{ij}^{ab} \rangle,"/></p>
</div><p><em>etc.</em>  The popular coupled cluster singles and doubles (CCSD) model
<a class="reference internal" href="bibliography.html#purvis-1982" id="id1">[Purvis:1982]</a> truncates the expansion at <img class="math" src="_images/math/8e4a190250adf32756c50d00a3013b8251e9d03f.png" alt="{\hat{T}} = {\hat{T}_1}
+ {\hat{T}_2}" style="vertical-align: -4px"/>.  This model has the same number of parameters as
configuration interaction singles and doubles (CISD) but improves upon
it by approximately accounting for higher-order terms using products
of lower-order terms (<em>e.g.</em>, the term <img class="math" src="_images/math/b2d34e3d8e675feb127ea2791c8a84589b232f7c.png" alt="{\hat{T}_2}^2" style="vertical-align: -5px"/> approximately
accounts for quadruple excitations).  The inclusion of such products
makes coupled-cluster methods <em>size extensive</em>, meaning that the
quality of the computation should not degrade for larger molecules.
The computational cost for CCSD scales as <img class="math" src="_images/math/35993be5fa2f2a1e51bf13da3a469ac8b3f4a518.png" alt="{\cal{O}}(o^2 v^4)" style="vertical-align: -4px"/>, where
<img class="math" src="_images/math/38732d488ba22c7cdf11ae43fe5953bcb317e065.png" alt="o" style="vertical-align: 0px"/> is the number of occupied orbitals and <img class="math" src="_images/math/cf4c2f9cafb5b0074abef55afea9b0f5802b349a.png" alt="v" style="vertical-align: 0px"/> is the number of virtual
orbitals.</p>
<p>Improving upon CCSD, the CCSD(T) method <a class="reference internal" href="bibliography.html#raghavachari-1989" id="id2">[Raghavachari:1989]</a> includes
a perturbative estimate of the energy contributed by the <img class="math" src="_images/math/b23f8b63905a7283d498ba6e84f3bf7d1bd38cdf.png" alt="{\hat{T}_3}" style="vertical-align: -3px"/>
operator.  The computational cost of this additional term scales as
<img class="math" src="_images/math/d30aae20ec1dd50ca4bfff8d835e41131215bbaf.png" alt="{\cal{O}}(o^3 v^4)" style="vertical-align: -4px"/>, making it rather expensive for molecules with more than
a dozen heavy atoms or so.  However, when this method is affordable, it
provides very high quality results in most cases.</p>
<p><span class="sc">Psi4</span> is capable of computing energies and analytic gradients for a
number of coupled cluster models.  It can also compute linear response
properties (such as static or frequency-dependent polarizability,
or optical rotation angles) for some models.  Excited states can
also be computed by the CC2 and CC3 models, or by EOM-CCSD.  Table
<a class="reference internal" href="#table-ccsummary"><span>CC Methods</span></a> summarizes these capabilities.  This section
describes how to carry out coupled cluster calculations within <span class="sc">Psi4</span>.
For higher-order coupled-cluster methods like CCSDT and CCSDTQ, <span class="sc">Psi4</span>
can interface to Kállay&#8217;s MRCC code (see <a class="reference internal" href="mrcc.html#sec-mrcc"><span>MRCC</span></a>).</p>
<table border="1" class="docutils" id="id3">
<span id="table-ccsummary"></span><caption><span class="caption-text">Current coupled cluster capabilities of <span class="sc">Psi4</span></span><a class="headerlink" href="#id3" title="Permalink to this table"></a></caption>
<colgroup>
<col width="20%" />
<col width="16%" />
<col width="15%" />
<col width="15%" />
<col width="20%" />
<col width="15%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Method</th>
<th class="head">Reference</th>
<th class="head">Energy</th>
<th class="head">Gradient</th>
<th class="head">Exc. Energies</th>
<th class="head">LR Props</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td rowspan="3">CC2</td>
<td>RHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>N</td>
<td>&#8212;</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>N</td>
<td>&#8212;</td>
</tr>
<tr class="row-odd"><td rowspan="3">CCSD</td>
<td>RHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
</tr>
<tr class="row-even"><td>UHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>&#8212;</td>
</tr>
<tr class="row-odd"><td>ROHF</td>
<td>Y</td>
<td>Y</td>
<td>Y</td>
<td>&#8212;</td>
</tr>
<tr class="row-even"><td rowspan="3">CCSD(T)</td>
<td>RHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>Y</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-odd"><td>a-CCSD(T)</td>
<td>RHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>n/a</td>
<td>n/a</td>
</tr>
<tr class="row-even"><td rowspan="3">CC3</td>
<td>RHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>Y</td>
<td>&#8212;</td>
</tr>
<tr class="row-odd"><td>UHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>Y</td>
<td>&#8212;</td>
</tr>
<tr class="row-even"><td>ROHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>Y</td>
<td>&#8212;</td>
</tr>
<tr class="row-odd"><td>CCD</td>
<td>Brueckner</td>
<td>Y</td>
<td>N</td>
<td>N</td>
<td>N</td>
</tr>
<tr class="row-even"><td>CCD(T)</td>
<td>Brueckner</td>
<td>Y</td>
<td>N</td>
<td>n/a</td>
<td>n/a</td>
</tr>
</tbody>
</table>
<p>The following wavefunctions are currently recognized by <span class="sc">Psi4</span> as arguments
to functions like <a class="reference internal" href="energy.html#driver.energy" title="driver.energy"><code class="xref py py-func docutils literal"><span class="pre">energy()</span></code></a>: <code class="docutils literal"><span class="pre">'ccsd'</span></code>, <code class="docutils literal"><span class="pre">'ccsd(t)'</span></code>, <code class="docutils literal"><span class="pre">'a-ccsd(t)'</span></code>, <code class="docutils literal"><span class="pre">'cc2'</span></code>,
<code class="docutils literal"><span class="pre">'cc3'</span></code>, <code class="docutils literal"><span class="pre">'bccd'</span></code> (CCD with Brueckner orbitals), <code class="docutils literal"><span class="pre">'bccd(t)'</span></code> (CCD(T) with
Brueckner orbitals), <code class="docutils literal"><span class="pre">'eom-ccsd'</span></code>, <code class="docutils literal"><span class="pre">'eom-cc2'</span></code> (CC2 for excited states),
<code class="docutils literal"><span class="pre">'eom-cc3'</span></code> (CC3 for excited states).  Response properties can be obtained
by calling the function <a class="reference internal" href="prop.html#driver.property" title="driver.property"><code class="xref py py-func docutils literal"><span class="pre">property()</span></code></a> (instead of, for example, <a class="reference internal" href="energy.html#driver.energy" title="driver.energy"><code class="xref py py-func docutils literal"><span class="pre">energy()</span></code></a>,
<em>e.g.</em>, <code class="docutils literal"><span class="pre">property('ccsd')</span></code>.  There are many sample
coupled cluster inputs provided in <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/samples">psi4/samples</a>.</p>
<div class="section" id="basic-keywords">
<h2>Basic Keywords<a class="headerlink" href="#basic-keywords" title="Permalink to this headline"></a></h2>
<p>A complete list of keywords related to coupled-cluster computations is
provided in the appendices, with the majority of the relevant
keywords appearing in Appendix <a class="reference internal" href="autodir_options_c/module__ccenergy.html#apdx-ccenergy"><span>CCENERGY</span></a>.  For a standard ground-state
CCSD or CCSD(T) computation, the following keywords are common:</p>
<div class="section" id="reference">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-reference-ccenergy"><span class="xref std std-term">REFERENCE</span></a><a class="headerlink" href="#reference" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Reference wavefunction type</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: RHF, ROHF, UHF</li>
<li><strong>Default</strong>: RHF</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="r-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-r-convergence-ccenergy"><span class="xref std std-term">R_CONVERGENCE</span></a><a class="headerlink" href="#r-convergence" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Convergence criterion for wavefunction (change) in CC amplitude equations.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-7</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="maxiter">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-maxiter-ccenergy"><span class="xref std std-term">MAXITER</span></a><a class="headerlink" href="#maxiter" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Maximum number of iterations to solve the CC equations</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 50</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="brueckner-orbs-r-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-brueckner-orbs-r-convergence-ccenergy"><span class="xref std std-term">BRUECKNER_ORBS_R_CONVERGENCE</span></a><a class="headerlink" href="#brueckner-orbs-r-convergence" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Convergence criterion for Breuckner orbitals. The convergence is determined based on the largest <img class="math" src="_images/math/16e357c096eed77674eca8ab99e4f7ede9e35081.png" alt="T_1" style="vertical-align: -4px"/> amplitude. Default adjusts depending on <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-ccenergy"><span class="xref std std-term">E_CONVERGENCE</span></a></p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-5</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="restart">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-restart-ccenergy"><span class="xref std std-term">RESTART</span></a><a class="headerlink" href="#restart" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Do restart the coupled-cluster iterations from old <img class="math" src="_images/math/af5a28ca8a321b443076a2fa13d823926ea6a26e.png" alt="t_1" style="vertical-align: -4px"/> and <img class="math" src="_images/math/fe8ef6267f2e4c6ecf2c54fa699f7499c89df730.png" alt="t_2" style="vertical-align: -3px"/> amplitudes? For geometry optimizations, Brueckner calculations, etc. the iterative solution of the CC amplitude equations may benefit considerably by reusing old vectors as initial guesses. Assuming that the MO phases remain the same between updates, the CC codes will, by default, re-use old vectors, unless the user sets RESTART = false.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: true</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="cachelevel">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-cachelevel-ccenergy"><span class="xref std std-term">CACHELEVEL</span></a><a class="headerlink" href="#cachelevel" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Cacheing level for libdpd governing the storage of amplitudes, integrals, and intermediates in the CC procedure. A value of 0 retains no quantities in cache, while a level of 6 attempts to store all quantities in cache. For particularly large calculations, a value of 0 may help with certain types of memory problems. The default is 2, which means that all four-index quantites with up to two virtual-orbital indices (e.g., <img class="math" src="_images/math/0eacf12eaa57c36e9c0b58407a3a73efdcbeca3e.png" alt="\langle ij | ab \rangle&gt;" style="vertical-align: -5px"/> integrals) may be held in the cache.</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 2</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="cachetype">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-cachetype-ccenergy"><span class="xref std std-term">CACHETYPE</span></a><a class="headerlink" href="#cachetype" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Selects the priority type for maintaining the automatic memory cache used by the libdpd codes. A value of <code class="docutils literal"><span class="pre">LOW</span></code> selects a &#8220;low priority&#8221; scheme in which the deletion of items from the cache is based on pre-programmed priorities. A value of LRU selects a &#8220;least recently used&#8221; scheme in which the oldest item in the cache will be the first one deleted.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: LOW, LRU</li>
<li><strong>Default</strong>: LOW</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="num-amps-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-num-amps-print-ccenergy"><span class="xref std std-term">NUM_AMPS_PRINT</span></a><a class="headerlink" href="#num-amps-print" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Number of important <img class="math" src="_images/math/af5a28ca8a321b443076a2fa13d823926ea6a26e.png" alt="t_1" style="vertical-align: -4px"/> and <img class="math" src="_images/math/fe8ef6267f2e4c6ecf2c54fa699f7499c89df730.png" alt="t_2" style="vertical-align: -3px"/> amplitudes to print</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 10</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="mp2-amps-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-mp2-amps-print-ccenergy"><span class="xref std std-term">MP2_AMPS_PRINT</span></a><a class="headerlink" href="#mp2-amps-print" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Do print the MP2 amplitudes which are the starting guesses for RHF and UHF reference functions?</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: false</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="larger-calculations">
<h2>Larger Calculations<a class="headerlink" href="#larger-calculations" title="Permalink to this headline"></a></h2>
<p>Here are a few recommendations for carrying out large-basis-set coupled
cluster calculations with <span class="sc">Psi4</span>:</p>
<ul class="simple">
<li>In most cases it is reasonable to set the <code class="docutils literal"><span class="pre">memory</span></code> keyword to 90% of
the available physical memory, at most.  There is a small amount of overhead
associated with the
coupled cluster modules that is not accounted for by the internal CC memory
handling routines.  Thus, the user should <em>not</em> specify the entire
physical memory of the system, or swapping is likely.  However, for especially large
calculations, it is better to set the <code class="docutils literal"><span class="pre">memory</span></code> keyword to a value less than 16 GB.</li>
<li>Set the <a class="reference internal" href="autodoc_glossary_options_c.html#term-cachelevel-ccenergy"><span class="xref std std-term">CACHELEVEL</span></a> keyword to <code class="docutils literal"><span class="pre">0</span></code>.
This will turn off cacheing, which, for very large calculations, can
lead to heap fragmentation and memory faults, even when sufficient
physical memory exists.</li>
<li>Set the <a class="reference internal" href="autodoc_glossary_options_c.html#term-print-globals"><span class="xref std std-term">PRINT</span></a> keyword to <code class="docutils literal"><span class="pre">2</span></code>.  This
will help narrow where memory bottlenecks or other errors exist in the
event of a crash.</li>
</ul>
</div>
<div class="section" id="excited-state-coupled-cluster-calculations">
<span id="sec-eomcc"></span><h2>Excited State Coupled Cluster Calculations<a class="headerlink" href="#excited-state-coupled-cluster-calculations" title="Permalink to this headline"></a></h2>
<p>A complete list of keywords related to
coupled cluster linear response is provided in Appendix <a class="reference internal" href="autodir_options_c/module__cceom.html#apdx-cceom"><span>CCEOM</span></a>.
The most important keywords associated with EOM-CC calculations are:</p>
<div class="section" id="roots-per-irrep">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-roots-per-irrep-cceom"><span class="xref std std-term">ROOTS_PER_IRREP</span></a><a class="headerlink" href="#roots-per-irrep" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Number of excited states per irreducible representation for EOM-CC and CC-LR calculations. Irreps denote the final state symmetry, not the symmetry of the transition.</p>
<ul class="simple">
<li><strong>Type</strong>: array</li>
<li><strong>Default</strong>: No Default</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="e-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-cceom"><span class="xref std std-term">E_CONVERGENCE</span></a><a class="headerlink" href="#e-convergence" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Convergence criterion for excitation energy (change) in the Davidson algorithm for CC-EOM. See Table <a class="reference internal" href="scf.html#table-conv-corl"><span>Post-SCF Convergence</span></a> for default convergence criteria for different calculation types.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-6</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="singles-print">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-singles-print-cceom"><span class="xref std std-term">SINGLES_PRINT</span></a><a class="headerlink" href="#singles-print" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Do print information on the iterative solution to the single-excitation EOM-CC problem used as a guess to full EOM-CC?</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: false</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="schmidt-add-residual-tolerance">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-schmidt-add-residual-tolerance-cceom"><span class="xref std std-term">SCHMIDT_ADD_RESIDUAL_TOLERANCE</span></a><a class="headerlink" href="#schmidt-add-residual-tolerance" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Minimum absolute value above which a guess vector to a root is added to the Davidson algorithm in the EOM-CC iterative procedure.</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-conv"><span>conv double</span></a></li>
<li><strong>Default</strong>: 1e-3</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="eom-guess">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-eom-guess-cceom"><span class="xref std std-term">EOM_GUESS</span></a><a class="headerlink" href="#eom-guess" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Specifies a set of single-excitation guess vectors for the EOM-CC procedure. If EOM_GUESS = <code class="docutils literal"><span class="pre">SINGLES</span></code>, the guess will be taken from the singles-singles block of the similarity-transformed Hamiltonian, Hbar. If EOM_GUESS = <code class="docutils literal"><span class="pre">DISK</span></code>, guess vectors from a previous computation will be read from disk. If EOM_GUESS = <code class="docutils literal"><span class="pre">INPUT</span></code>, guess vectors will be specified in user input. The latter method is not currently available.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: SINGLES, DISK, INPUT</li>
<li><strong>Default</strong>: SINGLES</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="linear-response-cclr-calculations">
<h2>Linear Response (CCLR) Calculations<a class="headerlink" href="#linear-response-cclr-calculations" title="Permalink to this headline"></a></h2>
<p>Linear response computations are invoked like <code class="docutils literal"><span class="pre">property('ccsd')</span></code>
or <code class="docutils literal"><span class="pre">property('cc2')</span></code>, along with a list of requested properties.
A complete list of keywords related to
coupled cluster linear response is provided in Appendix <a class="reference internal" href="autodir_options_c/module__ccresponse.html#apdx-ccresponse"><span>CCRESPONSE</span></a>.</p>
<p>The most important keywords associated with CC-LR calculations are as follows.</p>
<div class="section" id="property">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-property-ccresponse"><span class="xref std std-term">PROPERTY</span></a><a class="headerlink" href="#property" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>The response property desired. Acceptable values are <code class="docutils literal"><span class="pre">POLARIZABILITY</span></code> (default) for dipole-polarizabilities, <code class="docutils literal"><span class="pre">ROTATION</span></code> for specific rotations, <code class="docutils literal"><span class="pre">ROA</span></code> for Raman Optical Activity (<code class="docutils literal"><span class="pre">ROA_TENSOR</span></code> for each displacement), and <code class="docutils literal"><span class="pre">ALL</span></code> for all of the above.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: POLARIZABILITY, ROTATION, ROA, ROA_TENSOR, ALL</li>
<li><strong>Default</strong>: POLARIZABILITY</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="omega">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-omega-ccresponse"><span class="xref std std-term">OMEGA</span></a><a class="headerlink" href="#omega" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Array that specifies the desired frequencies of the incident radiation field in CCLR calculations. If only one element is given, the units will be assumed to be atomic units. If more than one element is given, then the units must be specified as the final element of the array. Acceptable units are <code class="docutils literal"><span class="pre">HZ</span></code>, <code class="docutils literal"><span class="pre">NM</span></code>, <code class="docutils literal"><span class="pre">EV</span></code>, and <code class="docutils literal"><span class="pre">AU</span></code>.</p>
<ul class="simple">
<li><strong>Type</strong>: array</li>
<li><strong>Default</strong>: No Default</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="gauge">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-gauge-ccresponse"><span class="xref std std-term">GAUGE</span></a><a class="headerlink" href="#gauge" title="Permalink to this headline"></a></h3>
<blockquote>
<div><p>Specifies the choice of representation of the electric dipole operator. Acceptable values are <code class="docutils literal"><span class="pre">LENGTH</span></code> for the usual length-gauge representation, <code class="docutils literal"><span class="pre">VELOCITY</span></code> for the modified velocity-gauge representation in which the static-limit optical rotation tensor is subtracted from the frequency- dependent tensor, or <code class="docutils literal"><span class="pre">BOTH</span></code>. Note that, for optical rotation calculations, only the choices of <code class="docutils literal"><span class="pre">VELOCITY</span></code> or <code class="docutils literal"><span class="pre">BOTH</span></code> will yield origin-independent results.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: LENGTH, VELOCITY, BOTH</li>
<li><strong>Default</strong>: LENGTH</li>
</ul>
</div></blockquote>
<style type="text/css"><!--
 .green {color: red;}
 .sc {font-variant: small-caps;}
 --></style></div>
</div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">CC: Coupled Cluster Methods</a><ul>
<li><a class="reference internal" href="#basic-keywords">Basic Keywords</a><ul>
<li><a class="reference internal" href="#reference"><code class="docutils literal"><span class="pre">REFERENCE</span></code></a></li>
<li><a class="reference internal" href="#r-convergence"><code class="docutils literal"><span class="pre">R_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#maxiter"><code class="docutils literal"><span class="pre">MAXITER</span></code></a></li>
<li><a class="reference internal" href="#brueckner-orbs-r-convergence"><code class="docutils literal"><span class="pre">BRUECKNER_ORBS_R_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#restart"><code class="docutils literal"><span class="pre">RESTART</span></code></a></li>
<li><a class="reference internal" href="#cachelevel"><code class="docutils literal"><span class="pre">CACHELEVEL</span></code></a></li>
<li><a class="reference internal" href="#cachetype"><code class="docutils literal"><span class="pre">CACHETYPE</span></code></a></li>
<li><a class="reference internal" href="#num-amps-print"><code class="docutils literal"><span class="pre">NUM_AMPS_PRINT</span></code></a></li>
<li><a class="reference internal" href="#mp2-amps-print"><code class="docutils literal"><span class="pre">MP2_AMPS_PRINT</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#larger-calculations">Larger Calculations</a></li>
<li><a class="reference internal" href="#excited-state-coupled-cluster-calculations">Excited State Coupled Cluster Calculations</a><ul>
<li><a class="reference internal" href="#roots-per-irrep"><code class="docutils literal"><span class="pre">ROOTS_PER_IRREP</span></code></a></li>
<li><a class="reference internal" href="#e-convergence"><code class="docutils literal"><span class="pre">E_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#singles-print"><code class="docutils literal"><span class="pre">SINGLES_PRINT</span></code></a></li>
<li><a class="reference internal" href="#schmidt-add-residual-tolerance"><code class="docutils literal"><span class="pre">SCHMIDT_ADD_RESIDUAL_TOLERANCE</span></code></a></li>
<li><a class="reference internal" href="#eom-guess"><code class="docutils literal"><span class="pre">EOM_GUESS</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#linear-response-cclr-calculations">Linear Response (CCLR) Calculations</a><ul>
<li><a class="reference internal" href="#property"><code class="docutils literal"><span class="pre">PROPERTY</span></code></a></li>
<li><a class="reference internal" href="#omega"><code class="docutils literal"><span class="pre">OMEGA</span></code></a></li>
<li><a class="reference internal" href="#gauge"><code class="docutils literal"><span class="pre">GAUGE</span></code></a></li>
</ul>
</li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="dfmp2.html"
                        title="previous chapter">DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="fnocc.html"
                        title="next chapter">FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/cc.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="relbar-bottom">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             >toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="fnocc.html" title="FNOCC: Frozen natural orbitals for CCSD(T), QCISD(T), CEPA, and MP4"
             >next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="dfmp2.html" title="DF-MP2: Density-Fitted Second-Order Møller-Plesset Perturbation Theory"
             >previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>

          <li class="nav-item nav-item-1"><a href="methods.html" >Theoretical Methods: SCF to FCI</a> &raquo;</li> 
      </ul>
    </div>
    </div>

    <div class="footer" role="contentinfo">
        &copy; Copyright 2015, The Psi4 Project.
      Last updated on Tuesday, 12 January 2016 03:10PM.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
    </div>
    <!-- cloud_sptheme 1.3 -->
  </body>
</html>