This file is indexed.

/usr/share/doc/psi4/html/introduction.html is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
<!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
  "http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">


<html xmlns="http://www.w3.org/1999/xhtml">
  <head>
    <meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
    
    <title>Introduction &mdash; Psi4 [] Docs</title>
    
    <link rel="stylesheet" href="_static/psi4.css" type="text/css" />
    <link rel="stylesheet" href="_static/pygments.css" type="text/css" />
    <link rel="stylesheet" href="./" type="text/css" />
    
    <script type="text/javascript">
      var DOCUMENTATION_OPTIONS = {
        URL_ROOT:    './',
        VERSION:     '',
        COLLAPSE_INDEX: false,
        FILE_SUFFIX: '.html',
        HAS_SOURCE:  true
      };
    </script>
    <script type="text/javascript" src="_static/jquery.js"></script>
    <script type="text/javascript" src="_static/underscore.js"></script>
    <script type="text/javascript" src="_static/doctools.js"></script>
    <script type="text/javascript" src="_static/jquery.cookie.js"></script>
    <script type="text/javascript" src="_static/toggle_sections.js"></script>
    <script type="text/javascript" src="_static/toggle_sidebar.js"></script>
    <script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
    <link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
    <link rel="top" title="Psi4 [] Docs" href="index.html" />
    <link rel="next" title="&lt;no title&gt;" href="mrcc_table_energy.html" />
    <link rel="prev" title="Programmers’ Manual" href="index.html" /> 
  </head>
  <body role="document">
    <div class="relbar-top">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             accesskey="I">index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             accesskey="C">toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="mrcc_table_energy.html" title="&lt;no title&gt;"
             accesskey="N">next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="index.html" title="Programmers’ Manual"
             accesskey="P">previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>
 
      </ul>
    </div>
    </div>
  

    <div class="document">
      <div class="documentwrapper">
        <div class="bodywrapper">
          <div class="body" role="main">
            
  <a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<div class="section" id="introduction">
<span id="sec-introduction"></span><h1>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline"></a></h1>
<div class="section" id="overview">
<h2>Overview<a class="headerlink" href="#overview" title="Permalink to this headline"></a></h2>
<p><span class="sc">Psi4</span> provides a wide variety of quantum chemical methods using
state-of-the-art numerical methods and algorithms.  Several parts of
the code feature shared-memory parallelization to run efficiently on
multi-core machines (see Sec. <a class="reference internal" href="external.html#sec-threading"><span>Threading</span></a>).
An advanced parser written in Python allows the user
input to have a very simple style for routine computations, but it can also
automate very complex tasks with ease.</p>
<p>In this section, we provide an overview of some of the features of
<span class="sc">Psi4</span> along with the prerequisite steps for running calculations.
Sec. <a class="reference internal" href="tutorial.html#sec-tutorial"><span>Tutorial</span></a> provides a brief tutorial to help new users
get started.  Section <a class="reference internal" href="psithoninput.html#sec-psithoninput"><span>Psithon</span></a> offers further details into the
structure of <span class="sc">Psi4</span> input files and how Python can be mixed with
quantum chemistry directives in <span class="sc">Psi4</span>. Section <a class="reference internal" href="psithonfunc.html#sec-psithonfunc"><span>Psithon Functions</span></a>
provides more detail on the Python functions provided by <span class="sc">Psi4</span>
and discusses some of the higher-level functions such as counterpoise
correction, complete-basis-set extrapolation, and running computations
on an entire database of molecules at a time.  Later sections deal with
the different types of computations which can be done using <span class="sc">Psi4</span>
(e.g., Hartree–Fock, MP2, coupled-cluster) and general procedures
such as geometry optimization and vibrational frequency analysis.
The <a class="reference internal" href="appendices.html#sec-appendices"><span>Appendices</span></a> include a complete description of all possible input
keywords for each module, as well as tables of available basis sets and
a listing of the sample input files available under <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/samples">psi4/samples</a>.
The user is urged to examine this directory of sample inputs, as
most common types of computations are represented there.
For the latest <span class="sc">Psi4</span> documentation, check
<a class="reference external" href="http://www.psicode.org">www.psicode.org</a>.</p>
</div>
<div class="section" id="citing-psifour">
<h2>Citing <span class="sc">Psi4</span><a class="headerlink" href="#citing-psifour" title="Permalink to this headline"></a></h2>
<div class="section" id="overall-psifour-package">
<h3>Overall <span class="sc">Psi4</span> Package<a class="headerlink" href="#overall-psifour-package" title="Permalink to this headline"></a></h3>
<p>The following citation should be used in any publication utilizing the
<span class="sc">Psi4</span> program package:</p>
<ul class="simple">
<li>&#8220;Psi4: An open-source <em>ab initio</em> electronic structure program,&#8221;
J. M. Turney, A. C. Simmonett, R. M. Parrish, E. G. Hohenstein, F.
Evangelista, J. T. Fermann, B. J. Mintz, L. A. Burns, J. J. Wilke, M. L.
Abrams, N. J.  Russ, M. L. Leininger, C. L. Janssen, E. T. Seidl, W. D.
Allen, H. F.  Schaefer, R. A. King, E. F. Valeev, C. D. Sherrill, and T.
D. Crawford, <em>WIREs Comput. Mol. Sci.</em> <strong>2</strong>, 556 (2012).
(doi: <a class="reference external" href="http://dx.doi.org/10.1002/wcms.93">10.1002/wcms.93</a>).</li>
</ul>
<p>Depending on the particular modules used, the user may also wish to
cite some of the following references for theoretical, algorithmic,
or implementation contributions specific to <span class="sc">Psi4</span> (in addition to
appropriate references for the underlying theory, which are not necessarily
included in the list below).</p>
</div>
<div class="section" id="density-cumulant-functional-theory-dcft">
<h3>Density Cumulant Functional Theory (DCFT)<a class="headerlink" href="#density-cumulant-functional-theory-dcft" title="Permalink to this headline"></a></h3>
<p id="intro-dcftcitations"><span class="sc">Psi4</span> features several formulations of newly-developed density cumulant
functional theory (DCFT). The theory and benchmark of this theory are
discussed in the following papers:</p>
<p>DC-06 (also known as DCFT-06):</p>
<ul class="simple">
<li>&#8220;Density Cumulant Functional Theory: First Implementation and
Benchmark Results for the DCFT-06 Model,&#8221; A. C. Simmonett,
J. J. Wilke, H. F. Schaefer, and W. Kutzelnigg, <em>J. Chem. Phys.</em>
<strong>133</strong>, 174122 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3503657">10.1063/1.3503657</a>).</li>
<li>&#8220;Analytic gradients for density cumulant functional theory: The
DCFT-06 model,&#8221; A. Yu. Sokolov, J. J. Wilke, A. C. Simmonett,
and H. F. Schaefer, <em>J. Chem. Phys.</em> <strong>137</strong>, 054105 (2012).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4739423">10.1063/1.4739423</a>).</li>
</ul>
<p>DC-12:</p>
<ul class="simple">
<li>&#8220;Density cumulant functional theory: The DC-12 method, an improved
description of the one-particle density matrix,&#8221; A. Yu. Sokolov,
A. C. Simmonett, and H. F. Schaefer, <em>J. Chem. Phys.</em>  <strong>138</strong>, 024107
(2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4773580">10.1063/1.4773580</a>).</li>
</ul>
<p>ODC-06 and ODC-12:</p>
<ul class="simple">
<li>&#8220;Orbital-optimized density cumulant functional theory,&#8221; A. Yu. Sokolov, and
H. F. Schaefer, <em>J. Chem. Phys.</em>  <strong>139</strong>, 204110 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4833138">10.1063/1.4833138</a>).</li>
</ul>
<p>ODC-13:</p>
<ul class="simple">
<li>&#8220;Density cumulant functional theory from a unitary transformation:
N-representability, three-particle correlation effects, and application
to O4+,&#8221; A. Yu. Sokolov, H. F. Schaefer, and W. Kutzelnigg,
<em>J. Chem. Phys.</em>  <strong>141</strong>, 074111 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4892946">10.1063/1.4892946</a>).</li>
</ul>
</div>
<div class="section" id="configuration-interaction-ci">
<h3>Configuration Interaction (CI)<a class="headerlink" href="#configuration-interaction-ci" title="Permalink to this headline"></a></h3>
<p>PSI has a highly optimized code for full configuration interaction
and highly correlated configuration interaction, as described in</p>
<ul class="simple">
<li>&#8220;The Configuration Interaction Method: Advances in Highly
Correlated Approaches,&#8221; C. D. Sherrill and H. F. Schaefer, in
<em>Adv. Quantum Chem.</em>, vol. 34, P.-O. Löwdin, Ed.
(Academic Press, New York, 1999), pp. 143-269.
(doi: <a class="reference external" href="http://dx.doi.org/10.1016/S0065-3276(08)60532-8">10.1016/S0065-3276(08)60532-8</a>).</li>
</ul>
</div>
<div class="section" id="coupled-cluster-cc">
<h3>Coupled Cluster (CC)<a class="headerlink" href="#coupled-cluster-cc" title="Permalink to this headline"></a></h3>
<p>A general discussion of coupled cluster theory is given in</p>
<ul class="simple">
<li>&#8220;An Introduction to Coupled Cluster Theory for Computational
Chemists,&#8221; T. D. Crawford and H. F. Schaefer, <em>Rev. Comp. Chem.</em>
<strong>14</strong>, 33-136 (2000).
(doi: <a class="reference external" href="http://dx.doi.org/10.1002/9780470125915.ch2">10.1002/9780470125915.ch2</a>).</li>
</ul>
<p>Implementation of frozen natural orbital (FNO) coupled cluster theory
in PSI and its performance for non-covalent interactions is discussed
in</p>
<ul class="simple">
<li>&#8220;Accurate Noncovalent Interaction Energies Using Truncated Basis Sets
Based on Frozen Natural Orbitals,&#8221; A. E. DePrince and C. D. Sherrill,
<em>J. Chem. Theory Comput.</em> <strong>9</strong>, 293-299 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct300780u">10.1021/ct300780u</a>).</li>
</ul>
<p>Implementation of density-fitted (DF) and Cholesky decomposition (CD)
coupled cluster in PSI, and its performance for non-covalent interactions
and reaction energies, is discussed in</p>
<ul class="simple">
<li>&#8220;Accuracy and Efficiency of Coupled-Cluster Theory Using
Density Fitting / Cholesky Decomposition, Frozen Natural Orbitals,
and a T1-Transformed Hamiltonian,&#8221; A. E. DePrince and C. D. Sherrill,
<em>J. Chem. Theory Comput.</em> <strong>9</strong>, 2687-2696 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct400250u">10.1021/ct400250u</a>).</li>
</ul>
</div>
<div class="section" id="mukherjee-state-specific-multi-reference-coupled-cluster-mk-mrcc">
<h3>Mukherjee State-Specific Multi-Reference Coupled Cluster (Mk-MRCC)<a class="headerlink" href="#mukherjee-state-specific-multi-reference-coupled-cluster-mk-mrcc" title="Permalink to this headline"></a></h3>
<p><span class="sc">Psi4</span> features production-level Mukherjee-style state-specific
coupled-cluster theory, including perturbative triples and also associated
multi-reference perturbation theories.  The theory and <span class="sc">Psi4</span>
implementation of these methods is discussed in the following papers.</p>
<p>General Mk-MRCC</p>
<ul class="simple">
<li>&#8220;Coupling Term Derivation and General Implementation of
State-Specific Multireference Coupled-Cluster Theories,&#8221;
F. A. Evangelista, W. D. Allen, and H. F. Schaefer,
<em>J. Chem. Phys.</em> <strong>127</strong>, 024102 (2007).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2743014">10.1063/1.2743014</a>).</li>
</ul>
<p>Mk-MRCCSD(T)</p>
<ul class="simple">
<li>&#8220;Perturbative Triples Corrections in State-Specific Multireference
Coupled Cluster Theory,&#8221;
F. A. Evangelista, E. Prochnow, J. Gauss, and H. F. Schaefer,
<em>J. Chem. Phys.</em> <strong>132</strong>, 074107 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3305335">10.1063/1.3305335</a>).</li>
</ul>
<p>Mk-MRCCSDT(-n)</p>
<ul class="simple">
<li>&#8220;Triple Excitations in State-Specific Multireference Coupled
Cluster Theory: Application of Mk-MRCCSDT and Mk-MRCCSDT-n Methods to
Model Systems,&#8221; F. A. Evangelista, A. C. Simmonett, W. D. Allen,
H. F. Schaefer, and J. Gauss, <em>J. Chem. Phys.</em> <strong>128</strong>, 124104
(2008).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.2834927">10.1063/1.2834927</a>).</li>
</ul>
<p>Mk-MRPT2</p>
<ul class="simple">
<li>&#8220;A Companion Perturbation Theory for State-specific
Multireference Coupled Cluster Methods,&#8221;
F. A. Evangelista, A. C. Simmonett, H. F. Schaefer, D. Mukherjee, and
W. D. Allen,
<em>Phys. Chem. Chem. Phys.</em> <strong>11</strong>, 4728-4741 (2009).
(doi: <a class="reference external" href="http://dx.doi.org/10.1039/b822910d">10.1039/b822910d</a>).</li>
</ul>
</div>
<div class="section" id="symmetry-adapted-perturbation-theory-sapt">
<h3>Symmetry-Adapted Perturbation Theory (SAPT)<a class="headerlink" href="#symmetry-adapted-perturbation-theory-sapt" title="Permalink to this headline"></a></h3>
<p><span class="sc">Psi4</span> features an extremely efficient code to perform wavefunction-based
Symmetry Adapted Perturbation Theory (SAPT).  A good review article for this
method is as follows:</p>
<ul class="simple">
<li>&#8220;Perturbation Theory Approach to Intermolecular Potential Energy
Surfaces of van der Waals Complexes,&#8221; B. Jeziorski, R. Moszynski,
and K. Szalewicz, <em>Chem. Rev.</em> <strong>94</strong>, 1887-1930 (1994).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/cr00031a008">10.1021/cr00031a008</a>).</li>
</ul>
<p><span class="sc">Psi4</span> benefits enormously from the introduction of density fitting (DF)
into SAPT.  There are several SAPT truncations available in PSI.  For
guidance on which one to choose, see the SAPT section of the manual
and refer to the following systematic study:</p>
<ul class="simple">
<li>&#8220;Levels of  Symmetry Adapted Perturbation Theory (SAPT). I. Efficiency and
Performance for Interaction Energies,&#8217;&#8217; T. M. Parker, L. A. Burns, R. M.
Parrish, A. G. Ryno, and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>140</strong>,
094106 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4867135">10.1063/1.4867135</a>).</li>
</ul>
<p>The theory and implementation of DF-SAPT is discussed
in the following papers for various levels of SAPT.</p>
<p>DF-SAPT0</p>
<ul class="simple">
<li>&#8220;Large-scale Symmetry-adapted Perturbation Theory Computations via
Density Fitting and Laplace Transformation Techniques: Investigating the
Fundamental Forces of DNA-Intercalator Interactions,&#8221; E. G. Hohenstein,
R. M. Parrish, C. D. Sherrill, J. M. Turney, and H. F. Schaefer, <em>J.
Chem. Phys.</em> <strong>135</strong>, 174017 (2011).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3656681">10.1063/1.3656681</a>).</li>
<li>&#8220;Density Fitting and Cholesky Decomposition Approximations
in Symmetry-Adapted Perturbation Theory: Implementation and Application
to Probe the Nature of <img class="math" src="_images/math/36f9e6d7b6de233f53a202ab02eb63a17958a878.png" alt="\pi - \pi" style="vertical-align: 0px"/> Interactions in Linear Acenes,&#8221;
E. G. Hohenstein and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>132</strong>,
184111 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3426316">10.1063/1.3426316</a>).</li>
</ul>
<p>SAPT2</p>
<ul class="simple">
<li>&#8220;Density Fitting of Intramonomer Correlation Effects in
Symmetry-Adapted Perturbation Theory,&#8221;
E. G. Hohenstein and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>133</strong>,
014101 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3451077">10.1063/1.3451077</a>).</li>
</ul>
<p>SAPT2+, SAPT2+(3), SAPT2+3</p>
<ul class="simple">
<li>&#8220;Wavefunction Methods for Noncovalent Interactions,&#8221; E. G.
Hohenstein and C. D. Sherrill, <em>WIREs: Comput. Mol. Sci.</em> <strong>2</strong>,
304-326 (2012).
(doi: <a class="reference external" href="http://dx.doi.org/10.1002/wcms.84">10.1002/wcms.84</a>).</li>
<li>&#8220;Density Fitting of Intramonomer Correlation Effects in
Symmetry-Adapted Perturbation Theory,&#8221;
E. G. Hohenstein and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>133</strong>,
014101 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3451077">10.1063/1.3451077</a>).</li>
<li>&#8220;Efficient Evaluation of Triple Excitations in Symmetry-Adapted
Perturbation Theory via MP2 Natural Orbitals,&#8221; E. G. Hohenstein
and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>133</strong>, 104107 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3479400">10.1063/1.3479400</a>).</li>
</ul>
<p>SAPT2+(CCD), SAPT2+(3)(CCD), and SAPT2+3(CCD)</p>
<ul class="simple">
<li>&#8220;Tractability Gains in Symmetry-Adapted Perturbation Theory Including
Coupled Double Excitations: CCD+ST(CCD) Dispersion with Natural Orbital
Truncations,&#8217;&#8217; R. M. Parrish, E. G. Hohenstein, and C. D. Sherrill,
<em>J. Chem. Phys.</em> <strong>139</strong>, 174102 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4826520">10.1063/1.4826520</a>).</li>
<li>&#8220;Wavefunction Methods for Noncovalent Interactions,&#8221; E. G.
Hohenstein and C. D. Sherrill, <em>WIREs: Comput. Mol. Sci.</em> <strong>2</strong>,
304-326 (2012).
(doi: <a class="reference external" href="http://dx.doi.org/10.1002/wcms.84">10.1002/wcms.84</a>).</li>
<li>&#8220;Density Fitting of Intramonomer Correlation Effects in
Symmetry-Adapted Perturbation Theory,&#8221;
E. G. Hohenstein and C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>133</strong>,
014101 (2010).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3451077">10.1063/1.3451077</a>).</li>
</ul>
</div>
<div class="section" id="orbital-optimized-post-hartree-fock-methods">
<h3>Orbital-Optimized Post-Hartree–Fock Methods<a class="headerlink" href="#orbital-optimized-post-hartree-fock-methods" title="Permalink to this headline"></a></h3>
<p>Orbital-optimized second-order perturbation theory (OMP2)</p>
<ul class="simple">
<li>&#8220;Quadratically convergent algorithm for orbital optimization in the
orbital-optimized coupled-cluster doubles method and in orbital-optimized
second-order Møller&#8211;Plesset perturbation theory,&#8221;
U. Bozkaya, J. M. Turney, Y. Yamaguchi, H. F. Schaefer, and C. D. Sherrill,
<em>J. Chem. Phys.</em> <strong>135</strong>, 104103 (2011).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3631129">10.1063/1.3631129</a>).</li>
<li>&#8220;Analytic energy gradients for the orbital-optimized second-order
Møller&#8211;Plesset perturbation theory,&#8221; U. Bozkaya and
C. D. Sherrill, <em>J. Chem. Phys.</em> <strong>138</strong>, 184103 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4803662">10.1063/1.4803662</a>).</li>
<li>&#8220;Orbital-Optimized Second-Order Perturbation Theory with Density-Fitting
and Cholesky Decomposition Approximations: An Efficient Implementation,&#8221;
U. Bozkaya,   <em>J. Chem. Theory Comput.</em> <strong>10</strong>, 2371 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct500231c">10.1021/ct500231c</a>).</li>
</ul>
<p>Orbital-optimized third-order perturbation theory (OMP3)</p>
<ul class="simple">
<li>&#8220;Orbital-Optimized Third-Order Møller&#8211;Plesset Perturbation
Theory and Its Spin-Component and Spin-Opposite Scaled Variants: Application
to Symmetry Breaking Problems,&#8221; U. Bozkaya,
<em>J. Chem. Phys.</em> <strong>135</strong>, 224103 (2011).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.3665134">10.1063/1.3665134</a>).</li>
<li>&#8220;Assessment of Orbital-Optimized Third-Order Møller&#8211;Plesset
Perturbation Theory and Its Spin-Component and Spin-Opposite Scaled Variants
for Thermochemistry and Kinetics,&#8221; E. Soydas and U. Bozkaya,
<em>J. Chem. Theory Comput.</em> <strong>9</strong>, 1452 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct301078q">10.1021/ct301078q</a>).</li>
<li>&#8220;Analytic energy gradients for the orbital-optimized third-order Møller&#8211;Plesset
Perturbation Theory,&#8221; U. Bozkaya,
<em>J. Chem. Phys.</em> <strong>139</strong>, 104116 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4820877">10.1063/1.4820877</a>).</li>
</ul>
<p>Orbital-optimized coupled electron pair approximation (OCEPA)</p>
<ul class="simple">
<li>&#8220;Orbital-optimized coupled-electron pair theory and its analytic gradients:
Accurate equilibrium geometries, harmonic vibrational frequencies, and hydrogen transfer
reactions,&#8221; U. Bozkaya and C. D. Sherrill,
<em>J. Chem. Phys.</em> <strong>139</strong>, 054104 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4816628">10.1063/1.4816628</a>).</li>
</ul>
<p>Orbital-optimized MP2.5 (OMP2.5)</p>
<ul class="simple">
<li>&#8220;Orbital-optimized MP2.5 and its analytic gradients: Approaching CCSD(T)
quality for noncovalent interactions,&#8221; U. Bozkaya and C. D. Sherrill,
<em>J. Chem. Phys.</em> <strong>141</strong>, 204105 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4902226">10.1063/1.4902226</a>).</li>
</ul>
<p>Extended Koopmans&#8217; Theorem</p>
<ul class="simple">
<li>&#8220;The extended Koopmans&#8217; theorem for orbital-optimized methods: Accurate
computation of ionization potentials,&#8221; U. Bozkaya,  <em>J. Chem. Phys.</em>
<strong>139</strong>, 154105 (2013).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.4825041">10.1063/1.4825041</a>).</li>
<li>&#8220;Accurate Electron Affinities from the Extended Koopmans&#8217; Theorem Based on Orbital-Optimized Methods,&#8221;
U. Bozkaya,   <em>J. Chem. Theory Comput.</em> <strong>10</strong>, 2041 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct500186j">10.1021/ct500186j</a>).</li>
</ul>
<p>Density-Fitted Orbital-optimized second-order perturbation theory (DF-OMP2)</p>
<ul class="simple">
<li>&#8220;Orbital-Optimized Second-Order Perturbation Theory with Density-Fitting
and Cholesky Decomposition Approximations: An Efficient Implementation,&#8221;
U. Bozkaya,   <em>J. Chem. Theory Comput.</em> <strong>10</strong>, 2371 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct500231c">10.1021/ct500231c</a>).</li>
<li>&#8220;Analytic Energy Gradients and Spin Multiplicities for Orbital-Optimized
Second-Order Perturbation Theory with Density-Fitting Approximation: An
Efficient Implementation,&#8221; U. Bozkaya, <em>J. Chem. Theory Comput.</em> <strong>10</strong>, 4389 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1021/ct500634s">10.1021/ct500634s</a>).</li>
</ul>
</div>
<div class="section" id="second-order-algebraic-diagrammatic-construction-adc-2">
<h3>Second-Order Algebraic-Diagrammatic Construction [ADC(2)]<a class="headerlink" href="#second-order-algebraic-diagrammatic-construction-adc-2" title="Permalink to this headline"></a></h3>
<p>General ADC(2) theory</p>
<ul class="simple">
<li>&#8220;Intermediate state representation approach to physical properties of
electronically excited molecules,&#8221;
J. Schirmer, and A. B. Trofimov, <em>J. Chem. Phys.</em> <strong>120</strong>,
11449-11464 (2004).
(doi: <a class="reference external" href="http://dx.doi.org/10.1063/1.1752875">10.1063/1.1752875</a>).</li>
</ul>
<p>Theory of &#8220;Partially-renormalized&#8221; CIS(D) and ADC(2) [PR-CIS(D) and PR-ADC(2)]
and their implementation in <span class="sc">Psi4</span></p>
<ul class="simple">
<li>&#8220;Excited State Calculation for Free-Base and Metalloporphyrins with
the Partially Renormalized Polarization Propagator Approach,&#8221;
M. Saitow and Y. Mochizuki, <em>Chem. Phys. Lett.</em> <strong>525</strong>, 144-149
(2012).
(doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cplett.2011.12.063">10.1016/j.cplett.2011.12.063</a>).</li>
</ul>
</div>
<div class="section" id="density-matrix-renormalization-group-dmrg">
<h3>Density Matrix Renormalization Group (DMRG)<a class="headerlink" href="#density-matrix-renormalization-group-dmrg" title="Permalink to this headline"></a></h3>
<ul class="simple">
<li>&#8220;CheMPS2: a free open-source spin-adapted implementation of the density
matrix renormalization group for ab initio quantum chemistry,&#8221;
S. Wouters, W. Poelmans, P. W. Ayers and D. Van Neck,
<em>Comput. Phys. Commun.</em> <strong>185</strong> (6), 1501-1514 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1016/j.cpc.2014.01.019">10.1016/j.cpc.2014.01.019</a>).</li>
<li>&#8220;The density matrix renormalization group for ab initio quantum chemistry,&#8221;
S. Wouters and D. Van Neck, <em>Eur. Phys. J. D</em> <strong>68</strong> (9), 272 (2014).
(doi: <a class="reference external" href="http://dx.doi.org/10.1140/epjd/e2014-50500-1">10.1140/epjd/e2014-50500-1</a>).</li>
</ul>
<span class="target" id="index-0"></span></div>
</div>
<div class="section" id="supported-architectures">
<span id="index-1"></span><h2>Supported Architectures<a class="headerlink" href="#supported-architectures" title="Permalink to this headline"></a></h2>
<p>The majority of <span class="sc">Psi4</span> was developed on Mac and Linux machines. In
principle, it should work on any Unix system; however, we have not tested
extensively on systems other than Mac and Linux. There is not a Windows
version of <span class="sc">Psi4</span>.</p>
<p><span class="sc">Psi4</span> has been successfully compiled using Intel, GCC, and Clang
compilers. For the Intel compilers, we recommend at least 12.1 (we have
had trouble with version 12.0 and 13.0.1). GCC version 4.6 or above is
recommended. For some architectures, a <a class="reference internal" href="conda.html#sec-conda"><span>precompiled binary</span></a> is available. See <a class="reference internal" href="external.html#sec-installfile"><span>Compiling and Installing</span></a> for details.</p>
</div>
<div class="section" id="capabilities">
<h2>Capabilities<a class="headerlink" href="#capabilities" title="Permalink to this headline"></a></h2>
<p><span class="sc">Psi4</span> can perform <em>ab initio</em> computations employing basis
sets of contrated Gaussian-type functions of virtually arbitrary
orbital quantum number.  Many parts of <span class="sc">Psi4</span> can recognize and
exploit the largest Abelian subgroup of the molecular point group.
Table <a class="reference internal" href="#table-methods"><span>Methods</span></a> displays the range of theoretical methods
available in <span class="sc">Psi4</span>.
For more details, see Tables <a class="reference internal" href="energy.html#table-energy-gen"><span>Energy</span></a>,
<a class="reference internal" href="energy.html#table-energy-dft"><span>Energy (DFT)</span></a>, <a class="reference internal" href="mrcc_table_energy.html#table-energy-mrcc"><span>Energy (MRCC)</span></a>,
<a class="reference internal" href="energy.html#table-energy-cfour"><span>Energy (CFOUR)</span></a>, <a class="reference internal" href="opt.html#table-grad-gen"><span>Gradient</span></a>,
<a class="reference internal" href="opt.html#table-grad-cfour"><span>Gradient (CFOUR)</span></a>, and <a class="reference internal" href="freq.html#table-freq-gen"><span>Frequency</span></a>.</p>
<table border="1" class="docutils" id="id54">
<span id="table-methods"></span><caption><span class="caption-text">Summary of theoretical methods available in <span class="sc">Psi4</span></span><a class="headerlink" href="#id54" title="Permalink to this table"></a></caption>
<colgroup>
<col width="26%" />
<col width="11%" />
<col width="11%" />
<col width="22%" />
<col width="30%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head">Method</th>
<th class="head">Energy</th>
<th class="head">Gradient</th>
<th class="head">Reference</th>
<th class="head">Parallelism</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>SCF (HF and DFT)</td>
<td>Y</td>
<td>Y <a class="footnote-reference" href="#f4" id="id27">[4]</a></td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>threaded</td>
</tr>
<tr class="row-odd"><td>DF-SCF (HF and DFT)</td>
<td>Y</td>
<td>Y <a class="footnote-reference" href="#f4" id="id28">[4]</a></td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>threaded</td>
</tr>
<tr class="row-even"><td>EFP <a class="footnote-reference" href="#f5" id="id29">[5]</a></td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>DCFT</td>
<td>Y</td>
<td>Y</td>
<td>UHF</td>
<td>partially threaded</td>
</tr>
<tr class="row-even"><td>MP2</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id30">[3]</a></td>
</tr>
<tr class="row-odd"><td>DF-MP2</td>
<td>Y</td>
<td>Y <a class="footnote-reference" href="#f2" id="id31">[2]</a></td>
<td>RHF/ROHF/UHF</td>
<td>threaded</td>
</tr>
<tr class="row-even"><td>DF-MP3</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id32">[3]</a></td>
</tr>
<tr class="row-odd"><td>MP3</td>
<td>Y</td>
<td>Y</td>
<td>RHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id33">[3]</a></td>
</tr>
<tr class="row-even"><td>MP2.5</td>
<td>Y</td>
<td>Y</td>
<td>RHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id34">[3]</a></td>
</tr>
<tr class="row-odd"><td>MP4</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id35">[3]</a></td>
</tr>
<tr class="row-even"><td>MP(n)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF</td>
<td>partially threaded</td>
</tr>
<tr class="row-odd"><td>ZAPT(n)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF</td>
<td>partially threaded</td>
</tr>
<tr class="row-even"><td>OMP2</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>partially threaded</td>
</tr>
<tr class="row-odd"><td>OMP3</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>partially threaded</td>
</tr>
<tr class="row-even"><td>OMP2.5</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>partially threaded</td>
</tr>
<tr class="row-odd"><td>DF-OMP2</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id36">[3]</a></td>
</tr>
<tr class="row-even"><td>OCEPA</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF/RKS/UKS</td>
<td>partially threaded</td>
</tr>
<tr class="row-odd"><td>CEPA(0)</td>
<td>Y</td>
<td>Y</td>
<td>RHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id37">[3]</a></td>
</tr>
<tr class="row-even"><td>CEPA(n), n=0,1,3</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id38">[3]</a></td>
</tr>
<tr class="row-odd"><td>ACPF/AQCC</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id39">[3]</a></td>
</tr>
<tr class="row-even"><td>QCISD</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id40">[3]</a></td>
</tr>
<tr class="row-odd"><td>QCISD(T)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id41">[3]</a></td>
</tr>
<tr class="row-even"><td>CC2</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id42">[3]</a></td>
</tr>
<tr class="row-odd"><td>CCSD</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id43">[3]</a></td>
</tr>
<tr class="row-even"><td>DF-CCSD</td>
<td>Y</td>
<td>Y</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id44">[3]</a></td>
</tr>
<tr class="row-odd"><td>DF-CCD</td>
<td>Y</td>
<td>Y</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id45">[3]</a></td>
</tr>
<tr class="row-even"><td>CCSD(T)</td>
<td>Y</td>
<td>Y <a class="footnote-reference" href="#f1" id="id46">[1]</a></td>
<td>RHF/ROHF/UHF</td>
<td>threaded (pthreads)</td>
</tr>
<tr class="row-odd"><td>DF-CCSD(T)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id47">[3]</a></td>
</tr>
<tr class="row-even"><td>CC3</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF/UHF</td>
<td>threaded (pthreads)</td>
</tr>
<tr class="row-odd"><td>Mk-MRPT2</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF/TCSCF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id48">[3]</a></td>
</tr>
<tr class="row-even"><td>Mk-MRCCSD</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF/TCSCF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id49">[3]</a></td>
</tr>
<tr class="row-odd"><td>Mk-MRCCSD(T)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF/TCSCF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id50">[3]</a></td>
</tr>
<tr class="row-even"><td>CI(n)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF</td>
<td>partially threaded</td>
</tr>
<tr class="row-odd"><td>RAS-CI</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF/ROHF</td>
<td>partially threaded</td>
</tr>
<tr class="row-even"><td>SAPT</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded</td>
</tr>
<tr class="row-odd"><td>CIS/RPA/TDHF</td>
<td>Y</td>
<td>&#8212;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr class="row-even"><td>ADC(2)</td>
<td>Y</td>
<td>&#8212;</td>
<td>RHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id51">[3]</a></td>
</tr>
<tr class="row-odd"><td>EOM-CCSD</td>
<td>Y</td>
<td>Y</td>
<td>RHF/ROHF/UHF</td>
<td>threaded <a class="footnote-reference" href="#f3" id="id52">[3]</a></td>
</tr>
<tr class="row-even"><td>DMRG-CI</td>
<td>Y</td>
<td>&#8212;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
<tr class="row-odd"><td>DMRG-SCF</td>
<td>Y</td>
<td>&#8212;</td>
<td>&nbsp;</td>
<td>&nbsp;</td>
</tr>
</tbody>
</table>
<p>Geometry optimization can be performed using either analytic gradients
or energy points.  Likewise, vibrational frequencies can be
computed by analytic second derivatives, by finite
differences of analytic gradients, or by finite differences of energies.
<span class="sc">Psi4</span> can also compute an extensive list of one-electron properties.</p>
</div>
<div class="section" id="technical-support">
<span id="index-2"></span><h2>Technical Support<a class="headerlink" href="#technical-support" title="Permalink to this headline"></a></h2>
<p>The <span class="sc">Psi4</span> package is
distributed for free and without any guarantee of reliability,
accuracy, or suitability for any particular purpose.  No obligation
to provide technical support is expressed or implied.  As time
allows, the developers will attempt to answer inquiries directed to
<a class="reference external" href="mailto:crawdad&#37;&#52;&#48;vt&#46;edu">crawdad<span>&#64;</span>vt<span>&#46;</span>edu</a>
or <a class="reference external" href="mailto:sherrill&#37;&#52;&#48;gatech&#46;edu">sherrill<span>&#64;</span>gatech<span>&#46;</span>edu</a>.
For bug reports, specific and detailed information, with example
inputs, would be appreciated.  Questions or comments regarding
this user&#8217;s manual may be sent to
<a class="reference external" href="mailto:sherrill&#37;&#52;&#48;gatech&#46;edu">sherrill<span>&#64;</span>gatech<span>&#46;</span>edu</a>.</p>
<p>Alternatively, bug reports and comments can be submitted to the <a class="reference external" href="https://github.com/psi4/psi4public/issues/new">Issue
tracker on GitHub</a> . This site
is viewable by all, but reporting bugs requires signing up for a <a class="reference external" href="https://github.com/signup/free">free
GitHub account</a>.</p>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="f1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id46">[1]</a></td><td>UHF-CCSD(T) gradients only, as of devel</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id31">[2]</a></td><td>Gradients are available for RHF and UHF references.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[3]</td><td><em>(<a class="fn-backref" href="#id30">1</a>, <a class="fn-backref" href="#id32">2</a>, <a class="fn-backref" href="#id33">3</a>, <a class="fn-backref" href="#id34">4</a>, <a class="fn-backref" href="#id35">5</a>, <a class="fn-backref" href="#id36">6</a>, <a class="fn-backref" href="#id37">7</a>, <a class="fn-backref" href="#id38">8</a>, <a class="fn-backref" href="#id39">9</a>, <a class="fn-backref" href="#id40">10</a>, <a class="fn-backref" href="#id41">11</a>, <a class="fn-backref" href="#id42">12</a>, <a class="fn-backref" href="#id43">13</a>, <a class="fn-backref" href="#id44">14</a>, <a class="fn-backref" href="#id45">15</a>, <a class="fn-backref" href="#id47">16</a>, <a class="fn-backref" href="#id48">17</a>, <a class="fn-backref" href="#id49">18</a>, <a class="fn-backref" href="#id50">19</a>, <a class="fn-backref" href="#id51">20</a>, <a class="fn-backref" href="#id52">21</a>)</em> threading through BLAS routines only</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[4]</td><td><em>(<a class="fn-backref" href="#id27">1</a>, <a class="fn-backref" href="#id28">2</a>)</em> DFT gradients only implemented for SCF type DF. LRC-DFT gradients not implemented yet.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f5" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id29">[5]</a></td><td>Both EFP/EFP and QM/EFP energies are available.</td></tr>
</tbody>
</table>
<div class="toctree-wrapper compound">
</div>
<style type="text/css"><!--
 .green {color: red;}
 .sc {font-variant: small-caps;}
 --></style></div>
</div>


          </div>
        </div>
      </div>
      <div class="sphinxsidebar" role="navigation" aria-label="main navigation">
        <div class="sphinxsidebarwrapper">
  <h3><a href="index.html">Table Of Contents</a></h3>
  <ul>
<li><a class="reference internal" href="#">Introduction</a><ul>
<li><a class="reference internal" href="#overview">Overview</a></li>
<li><a class="reference internal" href="#citing-psifour">Citing <span class="sc">Psi4</span></a><ul>
<li><a class="reference internal" href="#overall-psifour-package">Overall <span class="sc">Psi4</span> Package</a></li>
<li><a class="reference internal" href="#density-cumulant-functional-theory-dcft">Density Cumulant Functional Theory (DCFT)</a></li>
<li><a class="reference internal" href="#configuration-interaction-ci">Configuration Interaction (CI)</a></li>
<li><a class="reference internal" href="#coupled-cluster-cc">Coupled Cluster (CC)</a></li>
<li><a class="reference internal" href="#mukherjee-state-specific-multi-reference-coupled-cluster-mk-mrcc">Mukherjee State-Specific Multi-Reference Coupled Cluster (Mk-MRCC)</a></li>
<li><a class="reference internal" href="#symmetry-adapted-perturbation-theory-sapt">Symmetry-Adapted Perturbation Theory (SAPT)</a></li>
<li><a class="reference internal" href="#orbital-optimized-post-hartree-fock-methods">Orbital-Optimized Post-Hartree–Fock Methods</a></li>
<li><a class="reference internal" href="#second-order-algebraic-diagrammatic-construction-adc-2">Second-Order Algebraic-Diagrammatic Construction [ADC(2)]</a></li>
<li><a class="reference internal" href="#density-matrix-renormalization-group-dmrg">Density Matrix Renormalization Group (DMRG)</a></li>
</ul>
</li>
<li><a class="reference internal" href="#supported-architectures">Supported Architectures</a></li>
<li><a class="reference internal" href="#capabilities">Capabilities</a></li>
<li><a class="reference internal" href="#technical-support">Technical Support</a></li>
</ul>
</li>
</ul>

  <h4>Previous topic</h4>
  <p class="topless"><a href="index.html"
                        title="previous chapter">Programmers&#8217; Manual</a></p>
  <h4>Next topic</h4>
  <p class="topless"><a href="mrcc_table_energy.html"
                        title="next chapter">&lt;no title&gt;</a></p>
  <div role="note" aria-label="source link">
    <h3>This Page</h3>
    <ul class="this-page-menu">
      <li><a href="_sources/introduction.txt"
            rel="nofollow">Show Source</a></li>
    </ul>
   </div>
<div id="searchbox" style="display: none" role="search">
  <h3>Quick search</h3>
    <form class="search" action="search.html" method="get">
      <input type="text" name="q" />
      <input type="submit" value="Go" />
      <input type="hidden" name="check_keywords" value="yes" />
      <input type="hidden" name="area" value="default" />
    </form>
    <p class="searchtip" style="font-size: 90%">
    Enter search terms or a module, class or function name.
    </p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
        </div>
      </div>
      <div class="clearer"></div>
    </div>
    <div class="relbar-bottom">
        
    <div class="related" role="navigation" aria-label="related navigation">
      <h3>Navigation</h3>
      <ul>
        <li class="right" style="margin-right: 10px">
          <a href="genindex.html" title="General Index"
             >index</a></li>
        <li class="right" >
          <a href="py-modindex.html" title="Python Module Index"
             >modules</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="contents.html" title="Table Of Contents"
             >toc</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="mrcc_table_energy.html" title="&lt;no title&gt;"
             >next</a> &nbsp; &nbsp;</li>
        <li class="right" >
          <a href="index.html" title="Programmers’ Manual"
             >previous</a> &nbsp; &nbsp;</li>
    <li><a href="index.html">Psi4 []</a> &raquo; </li>
 
      </ul>
    </div>
    </div>

    <div class="footer" role="contentinfo">
        &copy; Copyright 2015, The Psi4 Project.
      Last updated on Tuesday, 12 January 2016 03:10PM.
      Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
    </div>
    <!-- cloud_sptheme 1.3 -->
  </body>
</html>