/usr/share/doc/psi4/html/optking.html is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>Geometry Optimization — Psi4 [] Docs</title>
<link rel="stylesheet" href="_static/psi4.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="./" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/jquery.cookie.js"></script>
<script type="text/javascript" src="_static/toggle_sections.js"></script>
<script type="text/javascript" src="_static/toggle_sidebar.js"></script>
<script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
<link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
<link rel="top" title="Psi4 [] Docs" href="index.html" />
<link rel="up" title="Theoretical Methods: SCF to FCI" href="methods.html" />
<link rel="next" title="Evaluation of One-Electron Properties" href="oeprop.html" />
<link rel="prev" title="ADC: Ab Initio Polarization Propagator" href="adc.html" />
</head>
<body role="document">
<div class="relbar-top">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
accesskey="C">toc</a> </li>
<li class="right" >
<a href="oeprop.html" title="Evaluation of One-Electron Properties"
accesskey="N">next</a> </li>
<li class="right" >
<a href="adc.html" title="ADC: Ab Initio Polarization Propagator"
accesskey="P">previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" accesskey="U">Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<div class="section" id="geometry-optimization">
<span id="sec-optking"></span><span id="index-0"></span><h1>Geometry Optimization<a class="headerlink" href="#geometry-optimization" title="Permalink to this headline">¶</a></h1>
<p><em>Code author: Rollin A. King</em></p>
<p><em>Section author: Rollin A. King and Lori A. Burns</em></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__optking.html#apdx-optking"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__optking.html#apdx-optking-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/bin/optking">OPTKING</a></p>
<p><span class="sc">Psi4</span> carries out molecular optimizations using a module called
optking. The optking program takes as input nuclear gradients and,
optionally, nuclear second derivatives — both in Cartesian coordinates.
The default minimization algorithm employs an empirical model Hessian,
redundant internal coordinates, a RFO step, and the BFGS Hessian update.</p>
<p>The principal literature references include the introduction of redundant
internal coordinates by Peng et al. <a class="reference internal" href="bibliography.html#peng-1996-49" id="id1">[Peng:1996:49]</a>.
The general approach employed in this code
is similar to the “model Hessian plus RF method” described and tested by Bakken and
Helgaker <a class="reference internal" href="bibliography.html#bakken-2002-9160" id="id2">[Bakken:2002:9160]</a>. (However, for separated
fragments, we have chosen not to employ by default their “extra-redundant”
coordinates defined by their “auxiliary interfragment” bonds. These can be
included via the option <a class="reference internal" href="autodoc_glossary_options_c.html#term-add-auxiliary-bonds-optking"><span class="xref std std-term">ADD_AUXILIARY_BONDS</span></a>).</p>
<p>The internal coordinates are generated automatically based on an assumed bond
connectivity. The connectivity is determined by testing if the interatomic
distance is less than the sum of atomic radii times the value of
<a class="reference internal" href="autodoc_glossary_options_c.html#term-covalent-connect-optking"><span class="xref std std-term">COVALENT_CONNECT</span></a>. If the user finds that some
connectivity is lacking by default, then this value may be increased.
Otherwise, the internal coordinate definitions may be modified. If one
desires to see or modify the internal coordinates being used, then one can set
<a class="reference internal" href="autodoc_glossary_options_c.html#term-intcos-generate-exit-optking"><span class="xref std std-term">INTCOS_GENERATE_EXIT</span></a> to true. The internal coordinate
definitions are provided in the file with extension ”.intco”. See the <a class="reference internal" href="#sec-optkingexamples"><span>Optimizing Minima</span></a>
section for more detail.</p>
<div class="admonition warning">
<p class="first admonition-title">Warning</p>
<p class="last">Optimizations where the molecule is specified in Z-matrix format
with dummy atoms will result in the molecule being converted to a Cartesian representation.</p>
</div>
<p>The ongoing development of optking is providing for unique treatment of
coordinates which connect distinct molecular fragments. Thus, several keywords
relate to “interfragment modes”, though many of these capabilities are
still under development. Presently by default, separate fragments are bonded by
nearest atoms, and the whole system is treated as if it were part of one
molecule. However, with the option <a class="reference internal" href="autodoc_glossary_options_c.html#term-frag-mode-optking"><span class="xref std std-term">FRAG_MODE</span></a>, fragments
may instead be related by a unique set of interfragment coordinates defined by
reference points within each fragment. The reference points can be atomic
positions (current default), linear combinations of
atomic positions, or located on the principal axes (not yet working).</p>
<div class="section" id="basic-keywords">
<h2>Basic Keywords<a class="headerlink" href="#basic-keywords" title="Permalink to this headline">¶</a></h2>
<div class="section" id="opt-type">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-opt-type-optking"><span class="xref std std-term">OPT_TYPE</span></a><a class="headerlink" href="#opt-type" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Specifies minimum search, transition-state search, or IRC following</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: MIN, TS, IRC</li>
<li><strong>Default</strong>: MIN</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="step-type">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-step-type-optking"><span class="xref std std-term">STEP_TYPE</span></a><a class="headerlink" href="#step-type" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Geometry optimization step type, either Newton-Raphson or Rational Function Optimization</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: RFO, NR, SD, LINESEARCH_STATIC</li>
<li><strong>Default</strong>: RFO</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="geom-maxiter">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-geom-maxiter-optking"><span class="xref std std-term">GEOM_MAXITER</span></a><a class="headerlink" href="#geom-maxiter" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Maximum number of geometry optimization steps</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: 50</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="g-convergence">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-g-convergence-optking"><span class="xref std std-term">G_CONVERGENCE</span></a><a class="headerlink" href="#g-convergence" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Set of optimization criteria. Specification of any MAX_*_G_CONVERGENCE or RMS_*_G_CONVERGENCE options will append to overwrite the criteria set here unless <a class="reference internal" href="autodoc_glossary_options_c.html#term-flexible-g-convergence-optking"><span class="xref std std-term">FLEXIBLE_G_CONVERGENCE</span></a> is also on. See Table <a class="reference internal" href="#table-optkingconv"><span>Geometry Convergence</span></a> for details.</p>
<ul class="simple">
<li><strong>Type</strong>: string</li>
<li><strong>Possible Values</strong>: QCHEM, MOLPRO, GAU, GAU_LOOSE, GAU_TIGHT, GAU_VERYTIGHT, TURBOMOLE, CFOUR, NWCHEM_LOOSE</li>
<li><strong>Default</strong>: QCHEM</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="full-hess-every">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-full-hess-every-optking"><span class="xref std std-term">FULL_HESS_EVERY</span></a><a class="headerlink" href="#full-hess-every" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Frequency with which to compute the full Hessian in the course of a geometry optimization. 0 means to compute the initial Hessian only, 1 means recompute every step, and N means recompute every N steps. The default (-1) is to never compute the full Hessian.</p>
<ul class="simple">
<li><strong>Type</strong>: integer</li>
<li><strong>Default</strong>: -1</li>
</ul>
</div></blockquote>
</div>
<div class="section" id="intcos-generate-exit">
<h3><a class="reference internal" href="autodoc_glossary_options_c.html#term-intcos-generate-exit-optking"><span class="xref std std-term">INTCOS_GENERATE_EXIT</span></a><a class="headerlink" href="#intcos-generate-exit" title="Permalink to this headline">¶</a></h3>
<blockquote>
<div><p>Do only generate the internal coordinates and then stop?</p>
<ul class="simple">
<li><strong>Type</strong>: <a class="reference internal" href="notes_c.html#op-c-boolean"><span>boolean</span></a></li>
<li><strong>Default</strong>: false</li>
</ul>
</div></blockquote>
</div>
</div>
<div class="section" id="optimizing-minima">
<span id="sec-optkingexamples"></span><span id="index-1"></span><h2>Optimizing Minima<a class="headerlink" href="#optimizing-minima" title="Permalink to this headline">¶</a></h2>
<p>First, define the molecule and basis in the input.</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h2o {
O
H 1 1.0
H 1 1.0 2 105.0
}
set basis dz
</pre></div>
</div>
<p>Then the following are examples of various types of calculations that can be completed.</p>
<ul>
<li><p class="first">Optimize a geometry using default methods (RFO step):</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">optimize</span><span class="p">(</span><span class="s">'scf'</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p class="first">Optimize using Newton-Raphson steps instead of RFO steps:</p>
<div class="highlight-python"><div class="highlight"><pre>set step_type nr
optimize('scf')
</pre></div>
</div>
</li>
<li><p class="first">Optimize using energy points instead of gradients:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">optimize</span><span class="p">(</span><span class="s">'scf'</span><span class="p">,</span> <span class="n">dertype</span><span class="o">=</span><span class="s">'energy'</span><span class="p">)</span>
</pre></div>
</div>
</li>
<li><p class="first">Optimize while limiting the initial step size to 0.1 au:</p>
<div class="highlight-python"><div class="highlight"><pre>set intrafrag_step_limit 0.1
optimize('scf')
</pre></div>
</div>
</li>
<li><p class="first">Optimize while always limiting the step size to 0.1 au:</p>
<div class="highlight-python"><div class="highlight"><pre>set {
intrafrag_step_limit 0.1
intrafrag_step_limit_min 0.1
intrafrag_step_limit_max 0.1
}
optimize('scf')
</pre></div>
</div>
</li>
<li><p class="first">Optimize while calculating the Hessian at every step:</p>
<div class="highlight-python"><div class="highlight"><pre>set full_hess_every 1
optimize('scf')
</pre></div>
</div>
</li>
</ul>
</div>
<div class="section" id="hessian">
<h2>Hessian<a class="headerlink" href="#hessian" title="Permalink to this headline">¶</a></h2>
<p>If Cartesian second derivatives are available, optking can read them
and transform them into internal coordinates to make an initial Hessian in
internal coordinates. Otherwise, several empirical Hessians are available,
including those of Schlegel <a class="reference internal" href="bibliography.html#schlegel-1984-333" id="id3">[Schlegel:1984:333]</a> and Fischer and Almlof
<a class="reference internal" href="bibliography.html#fischer-1992-9770" id="id4">[Fischer:1992:9770]</a>.
Either of these or a simple diagonal Hessian may be selected using the
<a class="reference internal" href="autodoc_glossary_options_c.html#term-intrafrag-hess-optking"><span class="xref std std-term">INTRAFRAG_HESS</span></a> keyword.</p>
<p>All the common Hessian update schemes are available. For formulas, see
Schlegel <a class="reference internal" href="bibliography.html#schlegel-1987-aimqc" id="id5">[Schlegel:1987:AIMQC]</a> and Bofill <a class="reference internal" href="bibliography.html#bofill-1994-1" id="id6">[Bofill:1994:1]</a>.</p>
<p>The Hessian may be computed during an optimization using the
<a class="reference internal" href="autodoc_glossary_options_c.html#term-full-hess-every-optking"><span class="xref std std-term">FULL_HESS_EVERY</span></a> keyword.</p>
</div>
<div class="section" id="transition-states-reaction-paths-and-constrained-optimizations">
<span id="index-2"></span><h2>Transition States, Reaction Paths, and Constrained Optimizations<a class="headerlink" href="#transition-states-reaction-paths-and-constrained-optimizations" title="Permalink to this headline">¶</a></h2>
<ul>
<li><p class="first">Calculate a starting Hessian and optimize the “transition state” of
linear water (note that without a reasonable starting geometry and
Hessian, such a straightforward search often fails):</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h2o {
O
H 1 1.0
H 1 1.0 2 160.0
}
set {
basis dz
full_hess_every 0
opt_type ts
}
optimize('scf')
</pre></div>
</div>
</li>
<li><p class="first">At a transition state (planar HOOH), compute the second derivative, and
then follow the intrinsic reaction path to the minimum:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule hooh {
symmetry c1
H
O 1 0.946347
O 2 1.397780 1 107.243777
H 3 0.946347 2 107.243777 1 0.0
}
set {
basis dzp
opt_type irc
geom_maxiter 50
}
frequencies('scf')
optimize('scf')
</pre></div>
</div>
</li>
<li><p class="first">Generate the internal coordinates and then stop:</p>
<div class="highlight-python"><div class="highlight"><pre>set intcos_generate_exit true
optimize('scf')
</pre></div>
</div>
<p>The coordinates may then be found in the “intco” file. In this case, the file contains:</p>
<div class="highlight-python"><div class="highlight"><pre>F 1 3
R 1 2
R 1 3
B 2 1 3
</pre></div>
</div>
<p>The first line indicates a fragment containing atoms 1-3. The following lines define
two distance coordinates (bonds) and one bend coordinate. This file can be modified, and if present,
is used in subsequent optimizations. Since the multiple-fragment coordinates are still under
development, they are not documented here. However, if desired, one can change the value
of <a class="reference internal" href="autodoc_glossary_options_c.html#term-frag-mode-optking"><span class="xref std std-term">FRAG_MODE</span></a>, generate the internal coordinates, and see how multiple
fragment systems are defined.</p>
<p>Coordinates may be frozen or fixed by adding an asterisk after the letter of the coordinate.
To optimize with the bond lengths fixed at their initial values, it is currently necessary to
generate and then modify the internal coordinate definitions as follows:</p>
<div class="highlight-python"><div class="highlight"><pre>F 1 3
R* 1 2
R* 1 3
B 2 1 3
</pre></div>
</div>
</li>
</ul>
</div>
<div class="section" id="convergence-criteria">
<span id="index-3"></span><h2>Convergence Criteria<a class="headerlink" href="#convergence-criteria" title="Permalink to this headline">¶</a></h2>
<p>Optking monitors five quantities to evaluate the progress of a geometry
optimization. These are (with their keywords) the change in energy
(<a class="reference internal" href="autodoc_glossary_options_c.html#term-max-energy-g-convergence-optking"><span class="xref std std-term">MAX_ENERGY_G_CONVERGENCE</span></a>), the maximum element of
the gradient (<a class="reference internal" href="autodoc_glossary_options_c.html#term-max-force-g-convergence-optking"><span class="xref std std-term">MAX_FORCE_G_CONVERGENCE</span></a>), the root-mean-square
of the gradient (<a class="reference internal" href="autodoc_glossary_options_c.html#term-rms-force-g-convergence-optking"><span class="xref std std-term">RMS_FORCE_G_CONVERGENCE</span></a>), the maximum element
of displacement (<a class="reference internal" href="autodoc_glossary_options_c.html#term-max-disp-g-convergence-optking"><span class="xref std std-term">MAX_DISP_G_CONVERGENCE</span></a>), and the
root-mean-square of displacement (<a class="reference internal" href="autodoc_glossary_options_c.html#term-rms-disp-g-convergence-optking"><span class="xref std std-term">RMS_DISP_G_CONVERGENCE</span></a>),
all in internal coordinates and atomic units. Usually, these options will not
be set directly. Primary control for geometry convergence lies with the keyword
<a class="reference internal" href="autodoc_glossary_options_c.html#term-g-convergence-optking"><span class="xref std std-term">G_CONVERGENCE</span></a> which sets the aforementioned in accordance
with Table <a class="reference internal" href="#table-optkingconv"><span>Geometry Convergence</span></a>.</p>
<div class="line-block">
<div class="line"><br /></div>
<div class="line"><br /></div>
</div>
<table border="1" class="docutils" id="id22">
<span id="table-optkingconv"></span><caption><span class="caption-text">Summary of sets of geometry optimization criteria available in <span class="sc">Psi4</span></span><a class="headerlink" href="#id22" title="Permalink to this table">¶</a></caption>
<colgroup>
<col width="17%" />
<col width="17%" />
<col width="17%" />
<col width="17%" />
<col width="17%" />
<col width="17%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><a class="reference internal" href="autodoc_glossary_options_c.html#term-g-convergence-optking"><span class="xref std std-term">G_CONVERGENCE</span></a></th>
<th class="head">Max Energy</th>
<th class="head">Max Force</th>
<th class="head">RMS Force</th>
<th class="head">Max Disp</th>
<th class="head">RMS Disp</th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td>NWCHEM_LOOSE <a class="footnote-reference" href="#fd" id="id7">[4]</a></td>
<td> </td>
<td><img class="math" src="_images/math/105b6298ab947bcbed70a8930b875ac141f10dd0.png" alt="4.5 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/0ffd169a320014a6b105caabc57b7acd4efec2b1.png" alt="3.0 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/7813148c7b96b534e657ea04b9c67b238870dec3.png" alt="5.4 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/8579929a8107960b9c37bab4673b4dab95440f78.png" alt="3.6 \times 10^{-3}" style="vertical-align: -1px"/></td>
</tr>
<tr class="row-odd"><td>GAU_LOOSE <a class="footnote-reference" href="#ff" id="id8">[6]</a></td>
<td> </td>
<td><img class="math" src="_images/math/567980fbf02a90a0a9eede03f9f2ab5db75bd7b1.png" alt="2.5 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/8fd7d48b32a4597e1be58d678ef66fe976890cee.png" alt="1.7 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/f1b28722b8cda3e70c353261a96627fad087a475.png" alt="1.0 \times 10^{-2}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/617773ef30baeb9b976153594c43ef3cf46fd058.png" alt="6.7 \times 10^{-3}" style="vertical-align: -1px"/></td>
</tr>
<tr class="row-even"><td>TURBOMOLE <a class="footnote-reference" href="#fd" id="id9">[4]</a></td>
<td><img class="math" src="_images/math/4b9819a720c75d6934f56104a39e3ce9cf00fe57.png" alt="1.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/dc98852d1c2caa6b80f3f00880f3112108ee5581.png" alt="1.0 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/003ec60f869f5fa28ebf3f3069345cf41a66245d.png" alt="5.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/dc98852d1c2caa6b80f3f00880f3112108ee5581.png" alt="1.0 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/003ec60f869f5fa28ebf3f3069345cf41a66245d.png" alt="5.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
</tr>
<tr class="row-odd"><td>GAU <a class="footnote-reference" href="#fc" id="id10">[3]</a> <a class="footnote-reference" href="#ff" id="id11">[6]</a></td>
<td> </td>
<td><img class="math" src="_images/math/4d1064f964d4cb27f852432ddf67d676adc8c134.png" alt="4.5 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/687d29bfdca9e22bb8bd0bf3aa45c9a3768a9892.png" alt="3.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/6ca87d7428ff1666e3fd3352324d9926cbde84a5.png" alt="1.8 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/866465a85b9f340f0b7c02a8facf0960bd31d7eb.png" alt="1.2 \times 10^{-3}" style="vertical-align: -1px"/></td>
</tr>
<tr class="row-even"><td>CFOUR <a class="footnote-reference" href="#fd" id="id12">[4]</a></td>
<td> </td>
<td> </td>
<td><img class="math" src="_images/math/03a9c965bb4f30635db639293db22a1981478534.png" alt="1.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td> </td>
<td> </td>
</tr>
<tr class="row-odd"><td>QCHEM <a class="footnote-reference" href="#fa" id="id13">[1]</a> <a class="footnote-reference" href="#fe" id="id14">[5]</a></td>
<td><img class="math" src="_images/math/4b9819a720c75d6934f56104a39e3ce9cf00fe57.png" alt="1.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/687d29bfdca9e22bb8bd0bf3aa45c9a3768a9892.png" alt="3.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td> </td>
<td><img class="math" src="_images/math/866465a85b9f340f0b7c02a8facf0960bd31d7eb.png" alt="1.2 \times 10^{-3}" style="vertical-align: -1px"/></td>
<td> </td>
</tr>
<tr class="row-even"><td>MOLPRO <a class="footnote-reference" href="#fb" id="id15">[2]</a> <a class="footnote-reference" href="#fe" id="id16">[5]</a></td>
<td><img class="math" src="_images/math/4b9819a720c75d6934f56104a39e3ce9cf00fe57.png" alt="1.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/687d29bfdca9e22bb8bd0bf3aa45c9a3768a9892.png" alt="3.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td> </td>
<td><img class="math" src="_images/math/687d29bfdca9e22bb8bd0bf3aa45c9a3768a9892.png" alt="3.0 \times 10^{-4}" style="vertical-align: -1px"/></td>
<td> </td>
</tr>
<tr class="row-odd"><td>GAU_TIGHT <a class="footnote-reference" href="#fc" id="id17">[3]</a> <a class="footnote-reference" href="#ff" id="id18">[6]</a></td>
<td> </td>
<td><img class="math" src="_images/math/2c8897a8245429afb67f2b9d4733631d1c15e490.png" alt="1.5 \times 10^{-5}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/8e47adad0ebc5d4eeb1a9d6fc11f3fba959e63b9.png" alt="1.0 \times 10^{-5}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/8901bc935f9ae9a32616b09420b75d65dcc099c0.png" alt="6.0 \times 10^{-5}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/ce4674402db0b1588b0a58f5ec2d994521e5b80e.png" alt="4.0 \times 10^{-5}" style="vertical-align: -1px"/></td>
</tr>
<tr class="row-even"><td>GAU_VERYTIGHT <a class="footnote-reference" href="#ff" id="id19">[6]</a></td>
<td> </td>
<td><img class="math" src="_images/math/13410cdb7ef21af3c045827a2263f7b8fc08b6ee.png" alt="2.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/4b9819a720c75d6934f56104a39e3ce9cf00fe57.png" alt="1.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/fe3fef8f82b62485980365c61c2aa335c1e8ca6f.png" alt="6.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
<td><img class="math" src="_images/math/a2d22a27633ae8e105814659f113ae52b0bbbc01.png" alt="4.0 \times 10^{-6}" style="vertical-align: -1px"/></td>
</tr>
</tbody>
</table>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="fa" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id13">[1]</a></td><td>Default</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="fb" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id15">[2]</a></td><td>Baker convergence criteria are the same.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="fc" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[3]</td><td><em>(<a class="fn-backref" href="#id10">1</a>, <a class="fn-backref" href="#id17">2</a>)</em> Counterpart NWCHEM convergence criteria are the same.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="fd" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[4]</td><td><em>(<a class="fn-backref" href="#id7">1</a>, <a class="fn-backref" href="#id9">2</a>, <a class="fn-backref" href="#id12">3</a>)</em> Convergence achieved when all active criteria are fulfilled.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="fe" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[5]</td><td><em>(<a class="fn-backref" href="#id14">1</a>, <a class="fn-backref" href="#id16">2</a>, <a class="fn-backref" href="#id20">3</a>)</em> Convergence achieved when <strong>Max Force</strong> and one of <strong>Max Energy</strong> or <strong>Max Disp</strong> are fulfilled.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="ff" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[6]</td><td><em>(<a class="fn-backref" href="#id8">1</a>, <a class="fn-backref" href="#id11">2</a>, <a class="fn-backref" href="#id18">3</a>, <a class="fn-backref" href="#id19">4</a>, <a class="fn-backref" href="#id21">5</a>)</em> Normal convergence achieved when all four criteria (<strong>Max Force</strong>, <strong>RMS Force</strong>,
<strong>Max Disp</strong>, and <strong>RMS Disp</strong>) are fulfilled. To help with flat
potential surfaces, alternate convergence achieved when 100<img class="math" src="_images/math/67822dd868566f30d9b5bae6e432e381e602d3ac.png" alt="\times" style="vertical-align: 0px"/><em>rms force</em> is less
than <strong>RMS Force</strong> criterion.</td></tr>
</tbody>
</table>
<p>For ultimate control, specifying a value for any of the five monitored options activates that
criterium and overwrites/appends it to the criteria set by <a class="reference internal" href="autodoc_glossary_options_c.html#term-g-convergence-optking"><span class="xref std std-term">G_CONVERGENCE</span></a>.
Note that this revokes the special convergence arrangements detailed in notes <a class="footnote-reference" href="#fe" id="id20">[5]</a> and <a class="footnote-reference" href="#ff" id="id21">[6]</a>
and instead requires all active criteria to be fulfilled to
achieve convergence. To avoid this revokation, turn on keyword <a class="reference internal" href="autodoc_glossary_options_c.html#term-flexible-g-convergence-optking"><span class="xref std std-term">FLEXIBLE_G_CONVERGENCE</span></a>.</p>
</div>
<div class="section" id="output">
<span id="index-4"></span><h2>Output<a class="headerlink" href="#output" title="Permalink to this headline">¶</a></h2>
<p>The progress of a geometry optimization can be monitored by grepping the output file for the
tilde character (<code class="docutils literal"><span class="pre">~</span></code>). This produces a table like the one below that shows
for each iteration the value for each of the five quantities and whether the criterion
is active and fulfilled (<code class="docutils literal"><span class="pre">*</span></code>), active and unfulfilled ( ), or inactive (<code class="docutils literal"><span class="pre">o</span></code>).</p>
<div class="highlight-python"><div class="highlight"><pre>--------------------------------------------------------------------------------------------- ~
Step Total Energy Delta E MAX Force RMS Force MAX Disp RMS Disp ~
--------------------------------------------------------------------------------------------- ~
Convergence Criteria 1.00e-06 * 3.00e-04 * o 1.20e-03 * o ~
--------------------------------------------------------------------------------------------- ~
1 -38.91591820 -3.89e+01 6.91e-02 5.72e-02 o 1.42e-01 1.19e-01 o ~
2 -38.92529543 -9.38e-03 6.21e-03 3.91e-03 o 2.00e-02 1.18e-02 o ~
3 -38.92540669 -1.11e-04 4.04e-03 2.46e-03 o 3.63e-02 2.12e-02 o ~
4 -38.92548668 -8.00e-05 2.30e-04 * 1.92e-04 o 1.99e-03 1.17e-03 o ~
5 -38.92548698 -2.98e-07 * 3.95e-05 * 3.35e-05 o 1.37e-04 * 1.05e-04 o ~
</pre></div>
</div>
<p>The full list of keywords for optking is provided in Appendix <a class="reference internal" href="autodir_options_c/module__optking.html#apdx-optking"><span>OPTKING</span></a>.</p>
<p>Information on the Psithon function that drives geometry optimizations is provided
at <a class="reference internal" href="opt.html#driver.optimize" title="driver.optimize"><code class="xref py py-func docutils literal"><span class="pre">optimize()</span></code></a>.</p>
<style type="text/css"><!--
.green {color: red;}
.sc {font-variant: small-caps;}
--></style></div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">Geometry Optimization</a><ul>
<li><a class="reference internal" href="#basic-keywords">Basic Keywords</a><ul>
<li><a class="reference internal" href="#opt-type"><code class="docutils literal"><span class="pre">OPT_TYPE</span></code></a></li>
<li><a class="reference internal" href="#step-type"><code class="docutils literal"><span class="pre">STEP_TYPE</span></code></a></li>
<li><a class="reference internal" href="#geom-maxiter"><code class="docutils literal"><span class="pre">GEOM_MAXITER</span></code></a></li>
<li><a class="reference internal" href="#g-convergence"><code class="docutils literal"><span class="pre">G_CONVERGENCE</span></code></a></li>
<li><a class="reference internal" href="#full-hess-every"><code class="docutils literal"><span class="pre">FULL_HESS_EVERY</span></code></a></li>
<li><a class="reference internal" href="#intcos-generate-exit"><code class="docutils literal"><span class="pre">INTCOS_GENERATE_EXIT</span></code></a></li>
</ul>
</li>
<li><a class="reference internal" href="#optimizing-minima">Optimizing Minima</a></li>
<li><a class="reference internal" href="#hessian">Hessian</a></li>
<li><a class="reference internal" href="#transition-states-reaction-paths-and-constrained-optimizations">Transition States, Reaction Paths, and Constrained Optimizations</a></li>
<li><a class="reference internal" href="#convergence-criteria">Convergence Criteria</a></li>
<li><a class="reference internal" href="#output">Output</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="adc.html"
title="previous chapter">ADC: Ab Initio Polarization Propagator</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="oeprop.html"
title="next chapter">Evaluation of One-Electron Properties</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/optking.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="relbar-bottom">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
>toc</a> </li>
<li class="right" >
<a href="oeprop.html" title="Evaluation of One-Electron Properties"
>next</a> </li>
<li class="right" >
<a href="adc.html" title="ADC: Ab Initio Polarization Propagator"
>previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" >Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="footer" role="contentinfo">
© Copyright 2015, The Psi4 Project.
Last updated on Tuesday, 12 January 2016 03:10PM.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
</div>
<!-- cloud_sptheme 1.3 -->
</body>
</html>
|