/usr/share/doc/psi4/html/scf.html is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 | <!DOCTYPE html PUBLIC "-//W3C//DTD XHTML 1.0 Transitional//EN"
"http://www.w3.org/TR/xhtml1/DTD/xhtml1-transitional.dtd">
<html xmlns="http://www.w3.org/1999/xhtml">
<head>
<meta http-equiv="Content-Type" content="text/html; charset=utf-8" />
<title>HF: Hartree–Fock Theory — Psi4 [] Docs</title>
<link rel="stylesheet" href="_static/psi4.css" type="text/css" />
<link rel="stylesheet" href="_static/pygments.css" type="text/css" />
<link rel="stylesheet" href="./" type="text/css" />
<script type="text/javascript">
var DOCUMENTATION_OPTIONS = {
URL_ROOT: './',
VERSION: '',
COLLAPSE_INDEX: false,
FILE_SUFFIX: '.html',
HAS_SOURCE: true
};
</script>
<script type="text/javascript" src="_static/jquery.js"></script>
<script type="text/javascript" src="_static/underscore.js"></script>
<script type="text/javascript" src="_static/doctools.js"></script>
<script type="text/javascript" src="_static/jquery.cookie.js"></script>
<script type="text/javascript" src="_static/toggle_sections.js"></script>
<script type="text/javascript" src="_static/toggle_sidebar.js"></script>
<script type="text/javascript" src="_static/toggle_codeprompt.js"></script>
<link rel="shortcut icon" href="_static/favicon-psi4.ico"/>
<link rel="top" title="Psi4 [] Docs" href="index.html" />
<link rel="up" title="Theoretical Methods: SCF to FCI" href="methods.html" />
<link rel="next" title="DFT: Density Functional Theory" href="dft.html" />
<link rel="prev" title="Notes on Options" href="notes_c.html" />
</head>
<body role="document">
<div class="relbar-top">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
accesskey="I">index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
accesskey="C">toc</a> </li>
<li class="right" >
<a href="dft.html" title="DFT: Density Functional Theory"
accesskey="N">next</a> </li>
<li class="right" >
<a href="notes_c.html" title="Notes on Options"
accesskey="P">previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" accesskey="U">Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="document">
<div class="documentwrapper">
<div class="bodywrapper">
<div class="body" role="main">
<a class="reference internal image-reference" href="_images/psi4banner.png"><img alt="Psi4 Project Logo" src="_images/psi4banner.png" style="width: 100%;" /></a>
<div class="section" id="hf-hartree-fock-theory">
<span id="sec-scf"></span><span id="index-0"></span><h1>HF: Hartree–Fock Theory<a class="headerlink" href="#hf-hartree-fock-theory" title="Permalink to this headline">¶</a></h1>
<p><em>Code author: Justin M. Turney, Robert M. Parrish, and Andrew C. Simmonett</em></p>
<p><em>Section author: Robert M. Parrish</em></p>
<p><em>Module:</em> <a class="reference internal" href="autodir_options_c/module__scf.html#apdx-scf"><span>Keywords</span></a>, <a class="reference internal" href="autodir_psivariables/module__scf.html#apdx-scf-psivar"><span>PSI Variables</span></a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/lib/libscf_solver">LIBSCF_SOLVER</a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/lib/libmints">LIBMINTS</a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/lib/libfock">LIBFOCK</a>, <a class="reference external" href="https://github.com/psi4/psi4public/blob/master/src/lib/libdiis">LIBDIIS</a></p>
<div class="section" id="introduction">
<span id="sec-scfintro"></span><h2>Introduction<a class="headerlink" href="#introduction" title="Permalink to this headline">¶</a></h2>
<p>Self-Consistent-Field (SCF) theory forms the cornerstone of <em>ab initio</em> quantum
chemistry. Here SCF refers both to conventional Hartree–Fock (HF) molecular
orbital theory and also to generalized Kohn–Sham Density Functional Theory
(KS-DFT). <span class="sc">Psi4</span> contains a wholly rewritten SCF code, including many of the
most popular spin specializations, several efficient numerical methods for
treating Fock Matrix construction, and a brand new KS-DFT code featuring many of
the most popular DFT functional technologies.</p>
<p>An illustrative example of using the SCF module is as follows:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule {
0 3
O
O 1 1.21
}
set {
basis cc-pvdz
guess sad
reference uhf
scf_type pk
}
energy('scf')
</pre></div>
</div>
<p>This will run a UHF computation for triplet molecular oxygen (the ground state)
using a PK algorithm for the Electron Repulsion Integrals (ERI) and starting
from a Superposition of Atomic Densities (SAD) guess. DF integrals are
automatically used to converge the DF-SCF solution before the PK algorithm is
activated. After printing all manner of titles, geometries, sizings, and
algorithm choices, the SCF finally reaches the iterations:</p>
<div class="highlight-python"><div class="highlight"><pre> Total Energy Delta E RMS |[F,P]|
@UHF iter 0: -149.76816019169962 -1.49768e+02 1.36000e-01
@UHF iter 1: -149.59759112756984 1.70569e-01 2.42437e-02
@UHF iter 2: -149.62372414554761 -2.61330e-02 6.10239e-03 DIIS
@UHF iter 3: -149.62643112722810 -2.70698e-03 2.17299e-03 DIIS
@UHF iter 4: -149.62690062294968 -4.69496e-04 5.66895e-04 DIIS
@UHF iter 5: -149.62694151409750 -4.08911e-05 1.26359e-04 DIIS
@UHF iter 6: -149.62694337042228 -1.85632e-06 1.84114e-05 DIIS
@UHF iter 7: -149.62694340901407 -3.85918e-08 2.91692e-06 DIIS
@UHF iter 8: -149.62694340999002 -9.75945e-10 3.11857e-07 DIIS
DF guess converged.
...
@UHF iter 9: -149.62730705470665 -3.63645e-04 8.63718e-05 DIIS
@UHF iter 10: -149.62730737347948 -3.18773e-07 1.50227e-05 DIIS
@UHF iter 11: -149.62730738537107 -1.18916e-08 3.80497e-06 DIIS
@UHF iter 12: -149.62730738624032 -8.69250e-10 7.06690e-07 DIIS
</pre></div>
</div>
<p>The first set of iterations are from the DF portion of the computation, the
second set use the exact (but much slower) PK algorithm. Within the DF portion
of the computation, the zeroth-iteration uses a non-idempotent density matrix
obtained from the SAD guess, so the energy is unphysically low. However, the
first true iteration is quite close to the final DF energy, highlighting the
efficiency of the SAD guess. Pulay’s DIIS procedure is then used to accelerate
SCF convergence, with the DF phase reaching convergence in eight true
iterations. When used together, SAD and DIIS are usually sufficient to converge
the SCF for all but the most difficult systems. Additional convergence
techniques are available for more difficult cases, and are detailed below. At
this point, the code switches on the requested PK integrals technology, which
requires only four full iterations to reach convergence, starting from the DF
guess. This hybrid DF/conventional procedure can significantly accelerate SCF
computations requiring exact integrals, especially when used in concert with the
integral-direct conventional algorithm.</p>
<p>After the iterations are completed, a number of one-electron properties are
printed, and some bookkeeping is performed to set up possible correlated
computations. Additional one-electron properties are available by increasing the
<a class="reference internal" href="autodoc_glossary_options_c.html#term-print-globals"><span class="xref std std-term">PRINT</span></a> option. Also printed are the occupied and virtual orbital energies,
which are useful in elucidating the stability and reactivity of the system.</p>
</div>
<div class="section" id="theory">
<span id="index-1"></span><h2>Theory<a class="headerlink" href="#theory" title="Permalink to this headline">¶</a></h2>
<p>The objective of Hartree-Fock (HF) Theory is to produce the optimized Molecular
Orbitals (MOs) <img class="math" src="_images/math/379b06eeb89ae2553a8b20d66a28c63e78538db1.png" alt="\{\psi_i\}" style="vertical-align: -5px"/>,</p>
<div class="math">
<p><img src="_images/math/d9644c28110444d32c6ab10246ecd4ea0d49b754.png" alt="\psi_i(\vec x_1) = C_{\mu i} \phi_{\mu} (\vec x_1)."/></p>
</div><p>Here, <img class="math" src="_images/math/8995fc25737bf4c8bccd378edd9d255ebd05b0fe.png" alt="\{\phi_{\mu}\}" style="vertical-align: -6px"/> are the basis functions, which, in <span class="sc">Psi4</span> are
contracted cartesian Gaussian functions often referred to as Atomic Orbitals
(AOs). The matrix <img class="math" src="_images/math/fd695648e742589e2f6eb64090ad25e425f9edf0.png" alt="C_{\mu i}" style="vertical-align: -6px"/> contains the MO coefficients, which are the
constrained variational parameters in Hartree-Fock. The molecular orbitals, are
used to build the simplest possible antisymmetric wavefunction, a single Slater
determinant,</p>
<div class="math">
<p><img src="_images/math/617347db880c20559745a2974f144a630d12d9d4.png" alt="| \Psi_0 \rangle =
\frac{1}{\sqrt{N!}} \left | \begin{array}{cccc}
\psi_1 (\vec x_1) & \psi_2(\vec x_1) & \ldots & \psi_N (\vec x_1) \\
\psi_1 (\vec x_2) & \psi_2(\vec x_2) & \ldots & \psi_N (\vec x_2) \\
\vdots & \vdots & \ddots & \vdots \\
\psi_1 (\vec x_N) & \psi_2(\vec x_N) & \ldots & \psi_N (\vec x_N) \\
\end{array}\right |"/></p>
</div><p>This form for the Hartree-Fock wavefunction is actually entirely equivalent to
treating the electron correlation as a mean field repulsion in
<img class="math" src="_images/math/c4d1a3cc0bec86b810fa23d4b2e33bb74b0413aa.png" alt="\mathbb{R}^6" style="vertical-align: 0px"/> instead of a more complicated effect in
<img class="math" src="_images/math/45b99469d3013c746850966fb253dc409891d3a5.png" alt="\mathbb{R}^N" style="vertical-align: 0px"/>.</p>
<p>Considering the electronic Hamiltonian,</p>
<div class="math">
<p><img src="_images/math/2b39e2d21823d43d38ee0031b359f1b7d8fb1f34.png" alt="\hat H = \sum_{i} -\frac{1}{2} \nabla_i^2 + \sum_{i} \sum_{A} -
\frac{Z_A}{r_{iA}} + \sum_{i>j} \frac{1}{r_{ij}},"/></p>
</div><p>the Hartree-Fock energy is, by Slater’s rules,</p>
<div class="math">
<p><img src="_images/math/6e084f310bb78e3e1617d9f1d5f88fb28a4accf4.png" alt="E_{\mathrm{HF}} =
\langle \Psi_0 | \hat H | \Psi_0 \rangle
= \sum_{i} \langle i | \hat h | i \rangle
+ \frac 1 2 \sum_{i,j} [ii|jj] - [ij|ji]"/></p>
</div><div class="math">
<p><img src="_images/math/5425e72aa2590cee595e6cbde518445614aa2879.png" alt="=
D_{\mu\nu}^\alpha \left(H_{\mu\nu} + F_{\mu\nu}^{\alpha} \right)
+ D_{\mu\nu}^\beta \left(H_{\mu\nu} + F_{\mu\nu}^{\beta} \right)"/></p>
</div><p>Here <img class="math" src="_images/math/5f75778e1fdbd0354edda2de5144510a5da029c1.png" alt="H" style="vertical-align: 0px"/> is the AO-basis one-electron potential, encapsulating both
electron-nuclear attraction and kinetic energy,</p>
<div class="math">
<p><img src="_images/math/11c6d27a4c9c752a902eaf24aaac9ddb91ba7333.png" alt="H_{\mu\nu} =
\left(\mu \left| -\frac{1}{2} \nabla^2 + \sum_{A} -\frac{Z_A}{r_{1A}} \right
| \nu \right),"/></p>
</div><p><img class="math" src="_images/math/38c3f1bb635d72c20480efe631525d3464136e24.png" alt="D" style="vertical-align: 0px"/> is the AO-basis density matrix, build from the occupied orbital
coefficients,</p>
<div class="math">
<p><img src="_images/math/c6d87facd5167c9934fb12b37cd5db55e6772321.png" alt="D_{\mu\nu}^{\alpha} =
C_{\mu i}^{\alpha} C_{\nu i}^{\alpha},"/></p>
</div><p>and <img class="math" src="_images/math/68b0fc4683e0c8842b3a6cc6920f022f1c0db3fa.png" alt="F" style="vertical-align: 0px"/> is the Fock matrix, which is the effective one-body potential at
the current value of the density,</p>
<div class="math">
<p><img src="_images/math/5d192161fa24e156fa02cf2da7880603039b2849.png" alt="F_{\mu\nu}^{\alpha} = H_{\mu\nu}
+ \underbrace{\left(D_{\lambda\sigma}^{\alpha} + D_{\lambda\sigma}^{\beta}\right)
(\mu\nu|\lambda\sigma)}_{J}
+ \underbrace{D_{\lambda\sigma}^{\alpha} (\mu\lambda|\sigma\nu)}_{K^{\alpha}}"/></p>
</div><p>Here the tensor <img class="math" src="_images/math/2476d43f8fd36c215824270614f15b14e3fd9028.png" alt="(\mu\nu|\lambda\sigma)" style="vertical-align: -5px"/> is an AO Electron-Repulsion
Integral (ERI) in chemists’ notation,</p>
<div class="math">
<p><img src="_images/math/669ecb4ebb96d1d10bfa74dea626403acb638d11.png" alt="(\mu\nu|\lambda\sigma) = \iint_{\mathbb{R}^6}
\phi_{\mu} (\vec r_1)
\phi_{\nu} (\vec r_1)
\frac{1}{r_{12}}
\phi_{\lambda} (\vec r_2)
\phi_{\sigma} (\vec r_2)
\ \mathrm{d}^3 r_1
\ \mathrm{d}^3 r_2."/></p>
</div><p>The MO coefficients are found as the generalized eigenvectors of the Fock Matrix,</p>
<div class="math">
<p><img src="_images/math/875da9f6bf9a382f26be6c4cf86a918e706b3471.png" alt="F^\alpha C^\alpha = S C^\alpha \epsilon^\alpha"/></p>
</div><p>The eigenvalues <img class="math" src="_images/math/1c67e848e51a0f11ff730889cbd43af9034630a0.png" alt="\epsilon" style="vertical-align: 0px"/> are the orbital energies, and the metric matrix
<img class="math" src="_images/math/c6263458cb30b8d89520cf776bc3431879c1f0b5.png" alt="S" style="vertical-align: 0px"/> is the AO-basis overlap matrix</p>
<div class="math">
<p><img src="_images/math/a57a2d9d5c2d0338c90efdd589f171f2417b4d71.png" alt="S_{\mu\nu} = (\mu | \nu )"/></p>
</div><p>Note that the Fock Matrix depends on the density (both alpha and beta), and
therefore the orbitals. Because of this, SCF is a nonlinear procedure, which
terminates when the generating orbitals are self-consistent with the Fock matrix
they generate.</p>
<p>The formation of the Coulomb matrix <img class="math" src="_images/math/361e13f27e8f76935d439ee1958ea404609325f3.png" alt="J" style="vertical-align: 0px"/> and the exchange matrix
<img class="math" src="_images/math/84e3b25a8d6bb3a6ddf471bda0aeea98b5fbd632.png" alt="K^{\alpha}" style="vertical-align: 0px"/> dominate the computational effort of the SCF procedure. For
very large systems, diagonalization of the Fock matrix can also present a
significant hurdle.</p>
</div>
<div class="section" id="minimal-input">
<h2>Minimal Input<a class="headerlink" href="#minimal-input" title="Permalink to this headline">¶</a></h2>
<p>Minimal input for a Hartree-Fock computation is a molecule block, basis set
option, and a call to <code class="docutils literal"><span class="pre">energy('scf')</span></code>:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule {
He
}
set basis sto-3g
energy('scf')
</pre></div>
</div>
<p>This will run a Restricted Hartree-Fock (RHF) on neutral singlet Helium in
<img class="math" src="_images/math/db75df3e2b5a073f500992eae10086986cebf33f.png" alt="D_{2h}" style="vertical-align: -3px"/> spatial symmetry with a minimal <code class="docutils literal"><span class="pre">STO-3G</span></code> basis, 1.0E-6
energy and 1.0E-5 density convergence criteria (since single-point, see
<a class="reference internal" href="#table-conv-scf"><span>SCF Convergence & Algorithm</span></a>), a DF ERI algorithm, symmetric
orthogonalization, DIIS, and a core Hamiltonian guess. For more
information on any of these options, see the relevant section below.</p>
</div>
<div class="section" id="spin-symmetry-treatment">
<h2>Spin/Symmetry Treatment<a class="headerlink" href="#spin-symmetry-treatment" title="Permalink to this headline">¶</a></h2>
<p><span class="sc">Psi4</span> implements the most popular spin specializations of Hartree-Fock
theory, including:</p>
<dl class="docutils">
<dt>Restricted Hartree-Fock (RHF) [Default]</dt>
<dd>Appropriate only for closed-shell singlet systems, but twice as efficient
as the other flavors, as the alpha and beta densities are constrained to be
identical.</dd>
<dt>Unrestricted Hartree-Fock (UHF)</dt>
<dd>Appropriate for most open-shell systems, and fairly easy to converge.
The spatial parts of the alpha and beta orbitals are fully independent of each
other, which allows a considerable amount of flexibility in the wavefunction.
However, this flexibility comes at the cost of spin symmetry; UHF wavefunctions
need not be eigenfunctions of the <img class="math" src="_images/math/562122b811356a82fed11f9b452c375b184b68f8.png" alt="\hat S^2" style="vertical-align: 0px"/> operator. The deviation of
this operator from its expectation value is printed on the output file. If the
deviation is greater than a few hundredths, it is advisable to switch to an
ROHF to avoid this “spin-contamination” problem.</dd>
<dt>Restricted Open-Shell Hartree-Fock (ROHF)</dt>
<dd>Appropriate for open-shell systems where spin-contamination is problem.
Sometimes more difficult to converge, and assumes uniformly positive spin
polarization (the alpha and beta doubly-occupied orbitals are identical).</dd>
<dt>Constrained Unrestricted Hartree-Fock (CUHF)</dt>
<dd>A variant of ROHF that starts from a UHF ansatz, and is therefore often
easier to converge.</dd>
</dl>
<p>These can be invoked by the <a class="reference internal" href="autodoc_glossary_options_c.html#term-reference-scf"><span class="xref std std-term">REFERENCE</span></a> keyword, which defaults to <code class="docutils literal"><span class="pre">RHF</span></code>.
The charge and multiplicity may either be specified in the molecule definition:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h {
0 2 # Neutral doublet
H
}
</pre></div>
</div>
<p>or, dynamically, by setting the relevant attributes in the Python molecule
object:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">h</span><span class="o">.</span><span class="n">set_molecular_charge</span><span class="p">(</span><span class="mi">0</span><span class="p">)</span>
<span class="n">h</span><span class="o">.</span><span class="n">set_multiplicity</span><span class="p">(</span><span class="mi">2</span><span class="p">)</span>
</pre></div>
</div>
<p>Abelian spatial symmetry is fully supported in <span class="sc">Psi4</span>, and can be used to
obtain physical interpretation of the molecular orbitals, to assist in difficult
convergence cases, and, in some methods, to obtain significant performance
gains. The point group of the molecule is inferred when reading the molecule
section, and may be overridden by the <code class="docutils literal"><span class="pre">symmetry</span></code> flag, as in:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h {
0 2
H
symmetry c1
}
</pre></div>
</div>
<p>or by the <code class="docutils literal"><span class="pre">set_point_group</span></code> Python molecule attribute:</p>
<div class="highlight-python"><div class="highlight"><pre><span class="n">h</span><span class="o">.</span><span class="n">set_point_group</span><span class="p">(</span><span class="s">'c2v'</span><span class="p">)</span>
</pre></div>
</div>
<p>During the SCF procedure, the occupation of orbitals is typically determined by
the Aufbau principal across all spatial symmetries. This may result in the
occupation shifting between iterations. If the occupations are known <em>a priori</em>,
they may be clamped throughout the procedure by using the <a class="reference internal" href="autodoc_glossary_options_c.html#term-docc-globals"><span class="xref std std-term">DOCC</span></a> and
<a class="reference internal" href="autodoc_glossary_options_c.html#term-socc-globals"><span class="xref std std-term">SOCC</span></a> options. For instance, all good quantum chemists know that
<img class="math" src="_images/math/ab44cf29f6b7cf2559186d6ec00af45f66958751.png" alt="C_{2v}" style="vertical-align: -3px"/> water is
actually,:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h2o {
0 1
O
H 1 1.0
H 1 1.0 2 104.5
}
set {
docc [3,0,1,1] # 1A1 2A1 1B1 3A1 1B2
basis cc-pvdz
}
energy('scf')
</pre></div>
</div>
</div>
<div class="section" id="broken-symmetry">
<h2>Broken Symmetry<a class="headerlink" href="#broken-symmetry" title="Permalink to this headline">¶</a></h2>
<p>For certain problems, such diradicals, allowing the spin-up and spin-down
orbitals to differ in closed-shell computations can be advantageous;
this is known as symmetry breaking. The resulting unrestricted wavefunction
will often provide superior energetics, due to the increased flexibility,
but will suffer non-physicical spin contamination from higher multiplicity states.
A convenient approach to break symmetry is to perform a UHF or UKS calculation
with the guess HOMO and LUMO orbitals mixed.
Mixing of the guess orbitals can be requested by setting the <a class="reference internal" href="autodoc_glossary_options_c.html#term-guess-mix-scf"><span class="xref std std-term">GUESS_MIX</span></a>
keyword to true:</p>
<div class="highlight-python"><div class="highlight"><pre>set reference uhf
set guess_mix true
energy('scf')
</pre></div>
</div>
</div>
<div class="section" id="orthogonalization">
<h2>Orthogonalization<a class="headerlink" href="#orthogonalization" title="Permalink to this headline">¶</a></h2>
<p>One of the first steps in the SCF procedure is the determination of an
orthogonal basis (known as the OSO basis) from the atomic orbital basis (known
as the AO basis). The Molecular Orbital basis (MO basis) is then built as a
particular unitary transformation of the OSO basis. In <span class="sc">Psi4</span>, the
determination of the OSO basis is accomplished via either symmetric or canonical
orthogonalization. Symmetric orthogonalization uses the symmetric inverse square
root of the overlap matrix for the orthogonalization matrix. Use of symmetric
orthogonalization always yields the same number of OSO functions (and thereby
MOs) as AO functions. However, this may lead to numerical problems if the
overlap matrix has small eigenvalues, which may occur for large systems or for
systems where diffuse basis sets are used. This problem may be avoided by using
canonical orthogonalization, in which an asymmetric inverse square root of the
overlap matrix is formed, with numerical stability enhanced by the elimination
of eigenvectors corresponding to very small eigenvalues. As a few combinations
of AO basis functions may be discarded, the number of canonical-orthogonalized
OSOs and MOs may be slightly smaller than the number of AOs. In <span class="sc">Psi4</span>,
symmetric orthogonalization is used by default, unless the smallest overlap
eigenvalue falls below the user-supplied double option <a class="reference internal" href="autodoc_glossary_options_c.html#term-s-tolerance-scf"><span class="xref std std-term">S_TOLERANCE</span></a>, which
defaults to 1E-7. If the smallest eigenvalue is below this cutoff, canonical
orthogonalization is forced, and all eigenvectors corresponding to eigenvalues
below the cutoff are eliminated. Use of canonical orthogonalization can be
forced by setting the <a class="reference internal" href="autodoc_glossary_options_c.html#term-s-orthogonalization-scf"><span class="xref std std-term">S_ORTHOGONALIZATION</span></a> option to <code class="docutils literal"><span class="pre">CANONICAL</span></code>. Note
that in practice, the MOs and OSOs are built separately within each irrep from
the symmetry-adapted combinations of AOs known as Unique Symmetry Orbitals
(USOs). For canonical orthogonalization, this implies that the number of MOs
and OSOs per irrep may be slightly smaller than the number of USOs per irrep.</p>
<p>A contrived example demonstrating OSOs/MOs vs. AOs with symmetry is shown
below:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h2o {
0 1
O
H 1 1.0
H 1 1.0 2 104.5
symmetry c2 # Two irreps is easier to comprehend
}
set {
s_tolerance 0.0001 # Set an unreasonably tight
# tolerance to force canonical
basis aug-cc-pv5z # This diffuse basis will have
# small-ish eigenvalues for even H2O
}
energy('scf')
</pre></div>
</div>
<p>Output:</p>
<div class="highlight-python"><div class="highlight"><pre>... Initialization ...
==> Pre-Iterations <==
Minimum eigenvalue in the overlap matrix is 1.6888059293E-05.
Using Canonical Orthogonalization with cutoff of 1.0000000000E-04.
Overall, 3 of 287 possible MOs eliminated.
... Initial Orbital Guess Information ...
-------------------------------------------------------
Irrep Nso Nmo Nalpha Nbeta Ndocc Nsocc
-------------------------------------------------------
A 145 144 3 3 3 0
B 142 140 2 2 2 0
-------------------------------------------------------
Total 287 284 5 5 5 0
-------------------------------------------------------
</pre></div>
</div>
<p>In this example, there are 287 AO basis functions after spherical harmonics are
applied. These are used to produce 287 symmetry adapted USOs, 145 of which are
assigned to irrep A, and 142 of which are assigned to irrep B. Within irrep A,
144 OSOs fall above the eigenvalue cutoff, and within irrep B 140 OSOs fall
above the eigenvalue cutoff. In total, 284 molecular orbitals are chosen from
287 AOs/USOs. The table also shows the initial assignment of electrons to
irreps.</p>
</div>
<div class="section" id="initial-guess-convergence-stabilization">
<h2>Initial Guess/Convergence Stabilization<a class="headerlink" href="#initial-guess-convergence-stabilization" title="Permalink to this headline">¶</a></h2>
<p>In each step of the SCF procedure, a new Fock or Kohn–Sham potential is built
according to the previous density, following which the potential is diagonalized
to produce new molecular orbitals, from which a new density is computed. This
procedure is continued until either convergence is reached or a preset maximum
number of iterations is exceeded. Convergence is determined by both change in
energy and root-mean-square change in density matrix values, which must be below
the user-specified <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-scf"><span class="xref std std-term">E_CONVERGENCE</span></a> and <a class="reference internal" href="autodoc_glossary_options_c.html#term-d-convergence-scf"><span class="xref std std-term">D_CONVERGENCE</span></a>, respectively.
The maximum number of iterations is specified by the <a class="reference internal" href="autodoc_glossary_options_c.html#term-maxiter-scf"><span class="xref std std-term">MAXITER</span></a> option. It
should be noted that SCF is a chaotic process, and, as such, often requires
careful selection of initial orbitals and damping during iterations to ensure
convergence. This is particularly likely for large systems, metallic systems,
multireference systems, open-shell systems, anions, and systems with diffuse
basis sets.</p>
<p>For initial orbital selection, several options are available. These include:</p>
<dl class="docutils">
<dt>CORE [Default]</dt>
<dd>Diagonalization of the core Hamiltonian, removing even mean-field electron
repulsion. Simple, but often too far from the final solution for larger
systems. READ becomes the default for the second and later iterations
of geometry optimizations.</dd>
<dt>SAD</dt>
<dd>Superposition of Atomic Densities. Builds the initial density as the
spin-averaged sum of atomic UHF computations in the current basis. If an
open-shell system, uniform scaling of the spin-averaged density matrices is
performed. If orbitals are needed (e.g., in density fitting), a partial
Cholesky factorization of the density matrices is used. Often extremely
accurate, particularly for closed-shell systems.</dd>
<dt>GWH</dt>
<dd>Generalized Wolfsberg-Helmholtz, a simple Huckel-Theory-like method based on
the overlap and core Hamiltonian matrices. May be useful in open-shell systems.</dd>
<dt>READ</dt>
<dd>Read the previous orbitals from a checkpoint file, casting from one basis to
another if needed. Useful for starting anion computations from neutral
orbitals, or after small geometry changes. At present, casting from a
different molecular point group is not supported. This becomes the
default for the second and later iterations of geometry optimizations.</dd>
</dl>
<p>These are all set by the <a class="reference internal" href="autodoc_glossary_options_c.html#term-guess-scf"><span class="xref std std-term">GUESS</span></a> keyword. Also, an automatic Python
procedure has been developed for converging the SCF in a small basis, and then
casting up to the true basis. This can be done by adding
<a class="reference internal" href="autodoc_glossary_options_c.html#term-basis-guess-scf"><span class="xref std std-term">BASIS_GUESS</span></a> = SMALL_BASIS to the options list. We recommend the
3-21G basis for the small basis due to its efficient mix of flexibility and
compactness. An example of performing an RHF solution of water by SAD guessing
in a 3-21G basis and then casting up to cc-pVTZ is shown below:</p>
<div class="highlight-python"><div class="highlight"><pre>molecule h2o {
0 1
O
H 1 1.0
H 1 1.0 2 104.5
}
set {
basis cc-pvtz
basis_guess 3-21G
guess sad
}
energy('scf')
</pre></div>
</div>
<p>With regard to convergence stabilization, Pulay’s Direct Inversion of the
Iterative Subspace (DIIS) extrapolation, Gill’s Maximum Overlap Method (MOM),
and damping are all implemented. A summary of each is presented below,</p>
<dl class="docutils">
<dt>DIIS [On by Default]</dt>
<dd>DIIS uses previous iterates of the Fock Matrix together
with an error criterion based on the orbital gradient to produce an informed
estimate of the next Fock Matrix. DIIS is almost always necessary to converge
the SCF procedure and is therefore turned on by default. In rare cases, the
DIIS algorithm may need to be modified or turned off altogether, which may be
accomplished via the options detailed below.</dd>
<dt>MOM [Off by Default]</dt>
<dd>MOM was developed to combat a particular class of convergence failure:
occupation flipping. In some cases, midway though the SCF procedure, a partially
converged orbital which should be occupied in the fully-optimized SCF solution
has a slightly higher orbital eigenvalue than some other orbital which should be
destined to be a virtual orbital. This results in the virtual orbital being
spuriously occupied for one or more iterations. Sometimes this resolves itself
without help, other times the occupation flips back and forth between two, four,
or more orbitals. This is typically visible in the output as a non-converging
SCF which eventually settles down to steady oscillation between two (or more)
different total energies. This behavior can be ameliorated by choosing occupied
orbitals by “shape” instead of by orbital eigenvalue, i.e., by choosing the set
of new orbitals which looks most like some previously known “good” set. The
“good” set is typically the occupied orbitals from an one of the oscillating
iterations with the lowest total energy. For an oscillating system where the
lowest total energy occurs on iterations <img class="math" src="_images/math/956be6f41d8f86b1f8d2edffbb9afa4c6a59812b.png" alt="N,N+2,\ldots" style="vertical-align: -4px"/>, invoking
<a class="reference internal" href="autodoc_glossary_options_c.html#term-mom-start-scf"><span class="xref std std-term">MOM_START</span></a> <img class="math" src="_images/math/8c45b38d633fb6de83fc7087c4db116a5565752a.png" alt="N" style="vertical-align: 0px"/> can often rescue the convergence of the SCF. MOM can
be used in concert with DIIS, though care should be taken to not turn MOM on
until the oscillatory behavior begins.</dd>
<dt>Damping [Off by Default]</dt>
<dd>In some cases, a static mixing of Fock Matrices from adjacent iterations can
quench oscillations. This mixing, known as “damping” can be activated by setting
the <a class="reference internal" href="autodoc_glossary_options_c.html#term-damping-percentage-scf"><span class="xref std std-term">DAMPING_PERCENTAGE</span></a> keyword to a nonzero percent.</dd>
</dl>
</div>
<div class="section" id="eri-algorithms">
<h2>ERI Algorithms<a class="headerlink" href="#eri-algorithms" title="Permalink to this headline">¶</a></h2>
<p>The key difficulty in the SCF procedure is treatment of the four-index ERI
contributions to the Fock Matrix. A number of algorithms are available in
<span class="sc">Psi4</span> for these terms. The algorithm is selected by the <a class="reference internal" href="autodoc_glossary_options_c.html#term-scf-type-scf"><span class="xref std std-term">SCF_TYPE</span></a>
keyword, which may be one of the following</p>
<dl class="docutils">
<dt>PK [<a class="reference internal" href="#table-conv-scf"><span>Default</span></a>]</dt>
<dd>An out-of-core, presorted algorithm using exact ERIs. Quite fast for a
zero-error algorithm if enough memory is available. Integrals are
generated only once, and symmetry is utilized to reduce number of
integrals.</dd>
<dt>OUT_OF_CORE</dt>
<dd>An out-of-core, unsorted algorithm using exact ERIs. Overcomes the
memory bottleneck of the current PK algorithm. Integrals are generated
only once, and symmetry is utilized to reduce number of integrals.</dd>
<dt>DIRECT</dt>
<dd>A threaded, sieved, integral-direct algorithm, with full permutational
symmetry. This algorithm is brand new, but seems to be reasonably fast
up to 1500 basis function, uses zero disk, and can obtain significant
speedups with negligible error loss if the <a class="reference internal" href="autodoc_glossary_options_c.html#term-ints-tolerance-scf"><span class="xref std std-term">INTS_TOLERANCE</span></a> value
is set to 1.0E-8 or so.</dd>
<dt>DF [<a class="reference internal" href="#table-conv-scf"><span>Default</span></a>]</dt>
<dd>A density-fitted algorithm designed for computations with thousands of
basis functions. This algorithm is highly optimized, and is threaded
with a mixture of parallel BLAS and OpenMP. Note that this algorithm
should use the -JKFIT series of auxiliary bases, <em>not</em> the -RI or
-MP2FIT bases. The default guess for auxiliary basis set should work
for all Dunning bases, otherwise the <a class="reference internal" href="autodoc_glossary_options_c.html#term-df-basis-scf-scf"><span class="xref std std-term">DF_BASIS_SCF</span></a> keyword can
be used to manually specify the auxiliary basis. This algorithm is
preferred unless either absolute accuracy is required
[<img class="math" src="_images/math/4fce696da14a7c670c978096a9ffcd38af09193f.png" alt="\gtrsim" style="vertical-align: -5px"/>CCSD(T)] or a -JKFIT auxiliary basis is unavailable
for the primary basis/atoms involved.</dd>
<dt>CD</dt>
<dd>A threaded algorithm using approximate ERI’s obtained by Cholesky
decomposition of the ERI tensor. The accuracy of the Cholesky
decomposition is controlled by the keyword <a class="reference internal" href="autodoc_glossary_options_c.html#term-cholesky-tolerance-scf"><span class="xref std std-term">CHOLESKY_TOLERANCE</span></a>.
This algorithm is similar to the DF algorithm, but it is not suitable
for gradient computations. The algorithm to obtain the Cholesky
vectors is not designed for computations with thousands of basis
functions.</dd>
</dl>
<p>For some of these algorithms, Schwarz and/or density sieving can be used to
identify negligible integral contributions in extended systems. To activate
sieving, set the <a class="reference internal" href="autodoc_glossary_options_c.html#term-ints-tolerance-scf"><span class="xref std std-term">INTS_TOLERANCE</span></a> keyword to your desired cutoff
(1.0E-12 is recommended for most applications).</p>
<p>Recently, we have added the automatic capability to use the extremely fast DF
code for intermediate convergence of the orbitals, for <a class="reference internal" href="autodoc_glossary_options_c.html#term-scf-type-scf"><span class="xref std std-term">SCF_TYPE</span></a> other
than <code class="docutils literal"><span class="pre">DF</span></code>. At the moment, the code defaults to cc-pVDZ-JKFIT as the
auxiliary basis, unless the user specifies <a class="reference internal" href="autodoc_glossary_options_c.html#term-df-basis-scf-scf"><span class="xref std std-term">DF_BASIS_SCF</span></a> manually. For
some atoms, cc-pVDZ-JKFIT is not defined, so this procedure will fail. In these
cases, you will see an error message of the form:</p>
<div class="highlight-python"><div class="highlight"><pre>RuntimeError: sanity check failed! Gaussian94BasisSetParser::parser:
Unable to find the basis set for HE
</pre></div>
</div>
<p>This failure can be fixed by either setting <a class="reference internal" href="autodoc_glossary_options_c.html#term-df-basis-scf-scf"><span class="xref std std-term">DF_BASIS_SCF</span></a> to an auxiliary
basis set defined for all atoms in the system, or by setting <a class="reference internal" href="autodoc_glossary_options_c.html#term-df-scf-guess-scf"><span class="xref std std-term">DF_SCF_GUESS</span></a>
to false, which disables this acceleration entirely.</p>
</div>
<div class="section" id="convergence-and-algorithm-defaults">
<h2>Convergence and Algorithm Defaults<a class="headerlink" href="#convergence-and-algorithm-defaults" title="Permalink to this headline">¶</a></h2>
<table border="1" class="docutils" id="id11">
<span id="table-conv-scf"></span><caption><span class="caption-text">SCF algorithm and convergence criteria defaults by calculation type <a class="footnote-reference" href="#f1" id="id1">[1]</a></span><a class="headerlink" href="#id11" title="Permalink to this table">¶</a></caption>
<colgroup>
<col width="20%" />
<col width="20%" />
<col width="22%" />
<col width="22%" />
<col width="17%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><em>Ab Initio</em> Method</th>
<th class="head">Calculation Type</th>
<th class="head"><a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-scf"><span class="xref std std-term">E_CONVERGENCE</span></a></th>
<th class="head"><a class="reference internal" href="autodoc_glossary_options_c.html#term-d-convergence-scf"><span class="xref std std-term">D_CONVERGENCE</span></a></th>
<th class="head"><a class="reference internal" href="autodoc_glossary_options_c.html#term-scf-type-scf"><span class="xref std std-term">SCF_TYPE</span></a></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td rowspan="3">SCF of HF or DFT</td>
<td>energy</td>
<td>6</td>
<td>6</td>
<td rowspan="3">DF</td>
</tr>
<tr class="row-odd"><td>optimization</td>
<td>8</td>
<td>8</td>
</tr>
<tr class="row-even"><td>frequency <a class="footnote-reference" href="#f7" id="id2">[7]</a></td>
<td>8</td>
<td>8</td>
</tr>
<tr class="row-odd"><td rowspan="4">SCF of post-HF</td>
<td>energy</td>
<td>8</td>
<td>8</td>
<td rowspan="4">PK <a class="footnote-reference" href="#f3" id="id3">[3]</a></td>
</tr>
<tr class="row-even"><td>optimization</td>
<td>10</td>
<td>10</td>
</tr>
<tr class="row-odd"><td>frequency <a class="footnote-reference" href="#f7" id="id4">[7]</a></td>
<td>10</td>
<td>10</td>
</tr>
<tr class="row-even"><td>CC property <a class="footnote-reference" href="#f2" id="id5">[2]</a></td>
<td>10</td>
<td>10</td>
</tr>
</tbody>
</table>
<table border="1" class="docutils" id="id12">
<span id="table-conv-corl"></span><caption><span class="caption-text">Post-SCF convergence criteria defaults by calculation type <a class="footnote-reference" href="#f4" id="id6">[4]</a></span><a class="headerlink" href="#id12" title="Permalink to this table">¶</a></caption>
<colgroup>
<col width="23%" />
<col width="23%" />
<col width="25%" />
<col width="29%" />
</colgroup>
<thead valign="bottom">
<tr class="row-odd"><th class="head"><em>Ab Initio</em> Method</th>
<th class="head">Calculation Type</th>
<th class="head">E_CONVERGENCE <a class="footnote-reference" href="#f5" id="id7">[5]</a></th>
<th class="head">R_CONVERGENCE <a class="footnote-reference" href="#f6" id="id8">[6]</a></th>
</tr>
</thead>
<tbody valign="top">
<tr class="row-even"><td rowspan="4">post-HF of post-HF</td>
<td>energy</td>
<td>6</td>
<td> </td>
</tr>
<tr class="row-odd"><td>optimization</td>
<td>8</td>
<td> </td>
</tr>
<tr class="row-even"><td>frequency <a class="footnote-reference" href="#f7" id="id9">[7]</a></td>
<td>8</td>
<td> </td>
</tr>
<tr class="row-odd"><td>CC property <a class="footnote-reference" href="#f2" id="id10">[2]</a></td>
<td>8</td>
<td> </td>
</tr>
</tbody>
</table>
<p class="rubric">Footnotes</p>
<table class="docutils footnote" frame="void" id="f1" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id1">[1]</a></td><td>Note that this table applies only the SCF module,
not to the final convergence criteria for post-HF methods or to methods
that use an alternate starting point, like MCSCF. SAPT computations, too,
set tighter values.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f2" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[2]</td><td><em>(<a class="fn-backref" href="#id5">1</a>, <a class="fn-backref" href="#id10">2</a>)</em> This applies to properties computed through the <a class="reference internal" href="prop.html#driver.property" title="driver.property"><code class="xref py py-func docutils literal"><span class="pre">property()</span></code></a> function.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f3" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id3">[3]</a></td><td>Post-HF methods that do not rely upon the usual 4-index AO integrals use a density-
fitted SCF reference. That is, for DF-MP2 and SAPT, the default <a class="reference internal" href="autodoc_glossary_options_c.html#term-scf-type-scf"><span class="xref std std-term">SCF_TYPE</span></a> is DF.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f4" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id6">[4]</a></td><td>Note that this table applies to the final convergence criteria for
all the post-SCF modules that define a <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-cceom"><span class="xref std std-term">E_CONVERGENCE</span></a> keyword.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f5" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id7">[5]</a></td><td>The E_CONVERGENCE keyword is implemented for most post-SCF modules.
See a list beginning at <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-cceom"><span class="xref std std-term">E_CONVERGENCE</span></a>.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f6" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label"><a class="fn-backref" href="#id8">[6]</a></td><td>The R_CONVERGENCE keyword places a convergence check on an internal
residual error measure and is implemented for several post-SCF
modules (see list beginning at <a class="reference internal" href="autodoc_glossary_options_c.html#term-r-convergence-ccenergy"><span class="xref std std-term">R_CONVERGENCE</span></a>). It is defined
according to the quantum chemical method and so its default value is set
by each module individually.</td></tr>
</tbody>
</table>
<table class="docutils footnote" frame="void" id="f7" rules="none">
<colgroup><col class="label" /><col /></colgroup>
<tbody valign="top">
<tr><td class="label">[7]</td><td><em>(<a class="fn-backref" href="#id2">1</a>, <a class="fn-backref" href="#id4">2</a>, <a class="fn-backref" href="#id9">3</a>)</em> For frequency computations by finite difference of energies,
convergence criteria are tightened further still to 10 for
<a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-scf"><span class="xref std std-term">E_CONVERGENCE</span></a> and <a class="reference internal" href="autodoc_glossary_options_c.html#term-d-convergence-scf"><span class="xref std std-term">D_CONVERGENCE</span></a> for SCF of HF or DFT, 11
for <a class="reference internal" href="autodoc_glossary_options_c.html#term-e-convergence-scf"><span class="xref std std-term">E_CONVERGENCE</span></a> and <a class="reference internal" href="autodoc_glossary_options_c.html#term-d-convergence-scf"><span class="xref std std-term">D_CONVERGENCE</span></a> for SCF of post-HF,
and 10 for E_CONVERGENCE for post-HF of post-HF.</td></tr>
</tbody>
</table>
</div>
<div class="section" id="recommendations">
<h2>Recommendations<a class="headerlink" href="#recommendations" title="Permalink to this headline">¶</a></h2>
<p>The SCF code is already quite flexible and powerful, with new features being
added weekly. We have tried as much as possible to keep the number of options to
a minimum, and to allow all options to be used in the presence of all other
options. Below are some rough words of advice about using the SCF code for
practical calculations:</p>
<ul class="simple">
<li>For <a class="reference internal" href="autodoc_glossary_options_c.html#term-guess-scf"><span class="xref std std-term">GUESS</span></a>, the <code class="docutils literal"><span class="pre">SAD</span></code> guess is usually your
friend, even for open-shell systems (at the very least, it gets the right
number of electrons, unlike some other programs). For instance, we have found
that a simple SAD guess is often as good as doing a full SCF in a 3-21G basis
and then performing a cast-up, at a fraction of the cost. However, SAD and
DOCC/SOCC arrays do not play very well together at the moment. Also, the SAD
UHF guess is very slow in large basis sets, so you may want to cast up for
>TZ.</li>
<li>For wall time, <code class="docutils literal"><span class="pre">DF</span></code> may be a factor of ten or more faster than the exact
integral technologies available in PSI4.
Use <code class="docutils literal"><span class="pre">DF</span></code> unless you need absolute accuracy or do not
have a -JKFIT auxiliary set for your primary basis/atom type. Then use
<code class="docutils literal"><span class="pre">DIRECT</span></code>.</li>
<li>Don’t mess with the DIIS convergence options unless convergence is a problem.
We have optimized the parameters for efficiency over a wide array of system
types.</li>
<li>Buy a developer a beer!</li>
</ul>
<p>The “best-practice” input file for HF is:</p>
<div class="highlight-python"><div class="highlight"><pre>memory 1 GB # As much as you've got, the DF algorithm can use
molecule {
O
H 1 1.0
H 1 1.0 2 104.5
}
set {
basis cc-pvdz
scf_type df
guess sad
ints_tolerance 1.0E-10 # Even this is epically tight, 1.0E-8 is OK
}
energy('scf')
</pre></div>
</div>
<style type="text/css"><!--
.green {color: red;}
.sc {font-variant: small-caps;}
--></style></div>
</div>
</div>
</div>
</div>
<div class="sphinxsidebar" role="navigation" aria-label="main navigation">
<div class="sphinxsidebarwrapper">
<h3><a href="index.html">Table Of Contents</a></h3>
<ul>
<li><a class="reference internal" href="#">HF: Hartree–Fock Theory</a><ul>
<li><a class="reference internal" href="#introduction">Introduction</a></li>
<li><a class="reference internal" href="#theory">Theory</a></li>
<li><a class="reference internal" href="#minimal-input">Minimal Input</a></li>
<li><a class="reference internal" href="#spin-symmetry-treatment">Spin/Symmetry Treatment</a></li>
<li><a class="reference internal" href="#broken-symmetry">Broken Symmetry</a></li>
<li><a class="reference internal" href="#orthogonalization">Orthogonalization</a></li>
<li><a class="reference internal" href="#initial-guess-convergence-stabilization">Initial Guess/Convergence Stabilization</a></li>
<li><a class="reference internal" href="#eri-algorithms">ERI Algorithms</a></li>
<li><a class="reference internal" href="#convergence-and-algorithm-defaults">Convergence and Algorithm Defaults</a></li>
<li><a class="reference internal" href="#recommendations">Recommendations</a></li>
</ul>
</li>
</ul>
<h4>Previous topic</h4>
<p class="topless"><a href="notes_c.html"
title="previous chapter">Notes on Options</a></p>
<h4>Next topic</h4>
<p class="topless"><a href="dft.html"
title="next chapter">DFT: Density Functional Theory</a></p>
<div role="note" aria-label="source link">
<h3>This Page</h3>
<ul class="this-page-menu">
<li><a href="_sources/scf.txt"
rel="nofollow">Show Source</a></li>
</ul>
</div>
<div id="searchbox" style="display: none" role="search">
<h3>Quick search</h3>
<form class="search" action="search.html" method="get">
<input type="text" name="q" />
<input type="submit" value="Go" />
<input type="hidden" name="check_keywords" value="yes" />
<input type="hidden" name="area" value="default" />
</form>
<p class="searchtip" style="font-size: 90%">
Enter search terms or a module, class or function name.
</p>
</div>
<script type="text/javascript">$('#searchbox').show(0);</script>
</div>
</div>
<div class="clearer"></div>
</div>
<div class="relbar-bottom">
<div class="related" role="navigation" aria-label="related navigation">
<h3>Navigation</h3>
<ul>
<li class="right" style="margin-right: 10px">
<a href="genindex.html" title="General Index"
>index</a></li>
<li class="right" >
<a href="py-modindex.html" title="Python Module Index"
>modules</a> </li>
<li class="right" >
<a href="contents.html" title="Table Of Contents"
>toc</a> </li>
<li class="right" >
<a href="dft.html" title="DFT: Density Functional Theory"
>next</a> </li>
<li class="right" >
<a href="notes_c.html" title="Notes on Options"
>previous</a> </li>
<li><a href="index.html">Psi4 []</a> » </li>
<li class="nav-item nav-item-1"><a href="methods.html" >Theoretical Methods: SCF to FCI</a> »</li>
</ul>
</div>
</div>
<div class="footer" role="contentinfo">
© Copyright 2015, The Psi4 Project.
Last updated on Tuesday, 12 January 2016 03:10PM.
Created using <a href="http://sphinx-doc.org/">Sphinx</a> 1.3.3.
</div>
<!-- cloud_sptheme 1.3 -->
</body>
</html>
|