/usr/share/psi/databases/BAKERJCC96.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 | #
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
"""
| Geometries from Baker and Chan J. Comput. Chem. 17 888 (1996),
| as reported in Bakken and Helgaker, J. Chem. Phys. 117, 9160 (2002).
| No reference energies defined.
- **cp** ``'off'``
- **rlxd** ``'off'``
"""
import re
import qcdb
# <<< BAKERJCC96 Database Module >>>
dbse = 'BAKERJCC96'
isOS = 'true'
# <<< Database Members >>>
HRXN = ['HCN_to_HNC', 'HCCH_to_CCH2', 'H2CO_to_H2_CO',
'parent_diels_alder', 's_tetrazine_to_2HCN_N2', 'CH3CH3_to_CH2CH2_H2',
'CH3CH2F_to_CH2CH2_HF', 'CH2CHOH_to_CH3CHO', 'silylene_insertion',
'HNCCS_to_HCN_CS', 'acrolein_rotation', 'HCONHOH_to_HCOHNHO',
'HNC_H2_to_H2CNH', 'H2CNH_to_HCNH2', 'HCNH2_to_HCN_H2']
HRXN_TEMP = ['parent_diels_alder']
# <<< Chemical Systems Involved >>>
RXNM = {} # reaction matrix of reagent contributions per reaction
ACTV = {} # order of active reagents per reaction
ACTV['%s-%s' % (dbse, 'HCN_to_HNC' )] = ['%s-%s-reagent' % (dbse, 'HCN_to_HNC')]
RXNM['%s-%s' % (dbse, 'HCN_to_HNC' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCN_to_HNC')], [+1]))
ACTV['%s-%s' % (dbse, 'HCCH_to_CCH2' )] = ['%s-%s-reagent' % (dbse, 'HCCH_to_CCH2')]
RXNM['%s-%s' % (dbse, 'HCCH_to_CCH2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCCH_to_CCH2')], [+1]))
ACTV['%s-%s' % (dbse, 'H2CO_to_H2_CO' )] = ['%s-%s-reagent' % (dbse, 'H2CO_to_H2_CO')]
RXNM['%s-%s' % (dbse, 'H2CO_to_H2_CO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'H2CO_to_H2_CO')], [+1]))
ACTV['%s-%s' % (dbse, 'parent_diels_alder' )] = ['%s-%s-reagent' % (dbse, 'parent_diels_alder')]
RXNM['%s-%s' % (dbse, 'parent_diels_alder' )] = dict(zip(ACTV['%s-%s' % (dbse, 'parent_diels_alder')], [+1]))
ACTV['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2' )] = ['%s-%s-reagent' % (dbse, 's_tetrazine_to_2HCN_N2')]
RXNM['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2' )] = dict(zip(ACTV['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2')], [+1]))
ACTV['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ['%s-%s-reagent' % (dbse, 'CH3CH3_to_CH2CH2_H2')]
RXNM['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2')], [+1]))
ACTV['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ['%s-%s-reagent' % (dbse, 'CH3CH2F_to_CH2CH2_HF')]
RXNM['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF')], [+1]))
ACTV['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO' )] = ['%s-%s-reagent' % (dbse, 'CH2CHOH_to_CH3CHO')]
RXNM['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO')], [+1]))
ACTV['%s-%s' % (dbse, 'silylene_insertion' )] = ['%s-%s-reagent' % (dbse, 'silylene_insertion')]
RXNM['%s-%s' % (dbse, 'silylene_insertion' )] = dict(zip(ACTV['%s-%s' % (dbse, 'silylene_insertion')], [+1]))
ACTV['%s-%s' % (dbse, 'HNCCS_to_HCN_CS' )] = ['%s-%s-reagent' % (dbse, 'HNCCS_to_HCN_CS')]
RXNM['%s-%s' % (dbse, 'HNCCS_to_HCN_CS' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HNCCS_to_HCN_CS')], [+1]))
ACTV['%s-%s' % (dbse, 'acrolein_rotation' )] = ['%s-%s-reagent' % (dbse, 'acrolein_rotation')]
RXNM['%s-%s' % (dbse, 'acrolein_rotation' )] = dict(zip(ACTV['%s-%s' % (dbse, 'acrolein_rotation')], [+1]))
ACTV['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO' )] = ['%s-%s-reagent' % (dbse, 'HCONHOH_to_HCOHNHO')]
RXNM['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO')], [+1]))
ACTV['%s-%s' % (dbse, 'HNC_H2_to_H2CNH' )] = ['%s-%s-reagent' % (dbse, 'HNC_H2_to_H2CNH')]
RXNM['%s-%s' % (dbse, 'HNC_H2_to_H2CNH' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HNC_H2_to_H2CNH')], [+1]))
ACTV['%s-%s' % (dbse, 'H2CNH_to_HCNH2' )] = ['%s-%s-reagent' % (dbse, 'H2CNH_to_HCNH2')]
RXNM['%s-%s' % (dbse, 'H2CNH_to_HCNH2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'H2CNH_to_HCNH2')], [+1]))
ACTV['%s-%s' % (dbse, 'HCNH2_to_HCN_H2' )] = ['%s-%s-reagent' % (dbse, 'HCNH2_to_HCN_H2')]
RXNM['%s-%s' % (dbse, 'HCNH2_to_HCN_H2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCNH2_to_HCN_H2')], [+1]))
# <<< Reference Values [kcal/mol] >>>
BIND = {}
BIND['%s-%s' % (dbse, 'HCN_to_HNC' )] = 0.000
BIND['%s-%s' % (dbse, 'HCCH_to_CCH2' )] = 0.000
BIND['%s-%s' % (dbse, 'H2CO_to_H2_CO' )] = 0.000
BIND['%s-%s' % (dbse, 'parent_diels_alder' )] = 0.000
BIND['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2' )] = 0.000
BIND['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = 0.000
BIND['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = 0.000
BIND['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO' )] = 0.000
BIND['%s-%s' % (dbse, 'silylene_insertion' )] = 0.000
BIND['%s-%s' % (dbse, 'HNCCS_to_HCN_CS' )] = 0.000
BIND['%s-%s' % (dbse, 'acrolein_rotation' )] = 0.000
BIND['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO' )] = 0.000
BIND['%s-%s' % (dbse, 'HNC_H2_to_H2CNH' )] = 0.000
BIND['%s-%s' % (dbse, 'H2CNH_to_HCNH2' )] = 0.000
BIND['%s-%s' % (dbse, 'HCNH2_to_HCN_H2' )] = 0.000
# <<< Comment Lines >>>
TAGL = {}
TAGL['%s-%s' % (dbse, 'HCN_to_HNC' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HCN_to_HNC' )] = ''
TAGL['%s-%s' % (dbse, 'HCCH_to_CCH2' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HCCH_to_CCH2' )] = ''
TAGL['%s-%s' % (dbse, 'H2CO_to_H2_CO' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'H2CO_to_H2_CO' )] = ''
TAGL['%s-%s' % (dbse, 'parent_diels_alder' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'parent_diels_alder' )] = ''
TAGL['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2' )] = ''
TAGL['%s-%s-reagent' % (dbse, 's_tetrazine_to_2HCN_N2' )] = ''
TAGL['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ''
TAGL['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ''
TAGL['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'CH2CHOH_to_CH3CHO' )] = ''
TAGL['%s-%s' % (dbse, 'silylene_insertion' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'silylene_insertion' )] = ''
TAGL['%s-%s' % (dbse, 'HNCCS_to_HCN_CS' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HNCCS_to_HCN_CS' )] = ''
TAGL['%s-%s' % (dbse, 'acrolein_rotation' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'acrolein_rotation' )] = ''
TAGL['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HCONHOH_to_HCOHNHO' )] = ''
TAGL['%s-%s' % (dbse, 'HNC_H2_to_H2CNH' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HNC_H2_to_H2CNH' )] = ''
TAGL['%s-%s' % (dbse, 'H2CNH_to_HCNH2' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'H2CNH_to_HCNH2' )] = ''
TAGL['%s-%s' % (dbse, 'HCNH2_to_HCN_H2' )] = ''
TAGL['%s-%s-reagent' % (dbse, 'HCNH2_to_HCN_H2' )] = ''
# <<< Geometry Specification Strings >>>
GEOS = {}
GEOS['%s-%s-reagent' % (dbse, 'HCN_to_HNC')] = qcdb.Molecule("""
0 1
C -0.0399606537 1.7574844925 0.0000000000
N 1.2331003808 0.0000000000 0.0000000000
H -1.1931397271 -1.7574844925 0.0000000000
units bohr
""")
#set { guess gwh """)
GEOS['%s-%s-reagent' % (dbse, 'HCCH_to_CCH2')] = qcdb.Molecule("""
0 1
C -0.4287449922 -0.0396754553 0.0000000000
C 1.9151999208 0.0000000000 0.0000000000
H -2.1914826494 0.9243341981 0.0000000000
H 1.1657551200 -2.7344386158 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'H2CO_to_H2_CO')] = qcdb.Molecule("""
0 1
C 0.4656871259 0.8485069310 0.0000000000
O 2.6701879709 0.0000000000 0.0000000000
H -0.8014735829 -1.2561076240 0.0000000000
H -2.3344015139 0.4076006930 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'parent_diels_alder')] = qcdb.Molecule("""
0 1
C 2.8332856188 0.0000000000 1.3228081920
C 2.8332856188 0.0000000000 -1.3228081920
C -2.3253041766 1.1773255830 1.4550890112
C -2.3253041766 1.1773255830 -1.4550890112
C -0.9003485915 -0.5867135859 2.6456163840
C -0.9003485915 -0.5867135859 -2.6456163840
H -3.5271811018 2.4200543219 2.5397117805
H -3.5271811018 2.4200543219 -2.5397117805
H 3.2953993811 -1.7330277495 2.2966434467
H 3.2953993811 -1.7330277495 -2.2966434467
H 2.7098759932 1.7961080923 2.2800674415
H 2.7098759932 1.7961080923 -2.2800674415
H 0.3094408240 -1.7857534614 1.5179110011
H 0.3094408240 -1.7857534614 -1.5179110011
H -1.0137937565 -0.6962109120 4.6804210291
H -1.0137937565 -0.6962109120 -4.6804210291
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 's_tetrazine_to_2HCN_N2')] = qcdb.Molecule("""
0 1
N 1.4172944914 2.0866021582 0.0000000000
N -1.4172944914 2.0866021582 0.0000000000
N 1.1338355931 -2.3320847650 0.0000000000
N -1.1338355931 -2.3320847650 0.0000000000
C 2.5511300846 0.1227413034 0.0000000000
C -2.5511300846 0.1227413034 0.0000000000
H 4.5920341522 0.1227413034 0.0000000000
H -4.5920341522 0.1227413034 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'CH3CH3_to_CH2CH2_H2')] = qcdb.Molecule("""
0 1
C -0.8859807599 -0.5993092127 0.0000000000
C 1.7490330691 0.0000000000 0.0000000000
H -2.8124044495 1.4800624400 0.0000000000
H 2.6980243606 -0.2473177820 1.8113616294
H 2.6980243606 -0.2473177820 -1.8113616294
H -1.6346529801 -1.2327446580 1.8113616294
H -1.6346529801 -1.2327446580 -1.8113616294
H -0.1773906205 2.0793716527 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'CH3CH2F_to_CH2CH2_HF')] = qcdb.Molecule("""
0 1
C -1.2114041996 0.8408020855 0.0000000000
C 0.2710949367 -1.4185486447 0.0000000000
F 3.5694675519 0.0000000000 0.0000000000
H 0.8525043764 2.7837833236 0.0000000000
H 0.3440183107 -2.4023246321 1.7866606845
H 0.3440183107 -2.4023246321 -1.7866606845
H -2.0848496434 1.2993062499 1.7866606845
H -2.0848496434 1.2993062499 -1.7866606845
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'CH2CHOH_to_CH3CHO')] = qcdb.Molecule("""
0 1
C -0.8638822546 0.0813052799 -1.2005986026
C 0.8568384546 0.0000000000 0.8814626606
O 0.0000000000 0.0000000000 3.1838367722
H -0.6251819034 1.8414643222 -2.2435002266
H -1.6228517906 -0.1159760771 1.2188517026
H 2.8765713088 -0.2172341086 0.5404787182
H -0.6214938148 -1.5895594164 -2.3805310244
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'silylene_insertion')] = qcdb.Molecule("""
0 1
C -1.0718066965 -0.1928298581 -2.5299430030
C 1.0250683554 0.0000000000 -0.5763517845
Si 0.0000000000 0.0000000000 3.6474101733
H -2.1062850458 -1.9954618846 -2.4930629368
H 2.3105025336 0.4726358860 5.1508238324
H -0.1255963623 -1.7429478038 1.4155380424
H -1.8281836996 2.0590612062 4.1373801504
H 2.1120964044 1.7375623482 -0.9231008641
H 2.3199575761 -1.5749557960 -0.8688541874
H -0.2137259723 -0.1257146643 -4.4428207722
H -2.4220270929 1.3626505664 -2.5170186506
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'HNCCS_to_HCN_CS')] = qcdb.Molecule("""
0 1
H -3.8046808257 0.6512707943 0.0000000000
N -2.5162100514 -0.7568079564 0.0000000000
C -0.3115625330 -1.2877146607 0.0000000000
C 2.4597092296 0.8743461413 0.0000000000
S 5.2948168550 0.0000000000 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'acrolein_rotation')] = qcdb.Molecule("""
0 1
C -1.2039490098 0.6299819763 -1.8443710751
C 1.2056120532 0.0000000000 1.9839551839
C 0.0666798969 -0.9449729645 -0.3221285864
O 0.0000000000 0.0000000000 3.9490688445
H -2.0522570986 -0.0738599558 -3.5620058833
H 3.1211832712 0.7038419322 1.9619811778
H 0.2424607776 -2.9181815653 -0.8128813887
H -1.3797298905 2.6031905771 -1.3536182728
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'HCONHOH_to_HCOHNHO')] = qcdb.Molecule("""
0 1
O -3.5099961475 0.0808581274 0.0000000000
O 3.0085718011 0.0000000000 0.0000000000
C -1.2730134573 1.0962433404 0.0000000000
N 0.4462296750 -0.6585505903 0.0000000000
H -0.7144888327 3.0985015808 0.0000000000
H -2.0229706827 -2.0506512675 0.0000000000
H 4.0656676440 -1.5664011909 0.0000000000
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'HNC_H2_to_H2CNH')] = qcdb.Molecule("""
0 1
H 1.3134432637 -0.2040854069 3.0062409561
H -2.0477645147 0.2508396893 -1.7949671795
H 0.1303083495 -0.0467542824 -2.3515361651
N 0.0000000000 0.0000000000 1.6630059611
C 0.6040129016 0.0000000000 -0.5227435726
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'H2CNH_to_HCNH2')] = qcdb.Molecule("""
0 1
H -1.5502016034 1.0481518658 1.5179225979
H 0.3563149954 1.0481518658 -2.1765524295
H 0.1539684632 -2.0963037316 0.1645151437
N 0.0000000000 0.0000000000 1.2546414423
C 1.0399181448 0.0000000000 -0.7605267545
units bohr
""")
GEOS['%s-%s-reagent' % (dbse, 'HCNH2_to_HCN_H2')] = qcdb.Molecule("""
0 1
C 1.4474353774 0.0000000000 -1.1288243208
N 0.0000000000 0.0000000000 0.9719363835
H 3.2098577258 0.2829784675 -0.5084575223
H -2.3053050298 -1.2021721464 0.4824091612
H -2.3519880735 0.9191936788 0.1829362984
units bohr
""")
#########################################################################
# <<< Supplementary Quantum Chemical Results >>>
DATA = {}
DATA['NUCLEAR REPULSION ENERGY'] = {}
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCN_to_HNC-reagent' ] = 23.31219465
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCCH_to_CCH2-reagent' ] = 24.00207708
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-H2CO_to_H2_CO-reagent' ] = 29.08166284
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-parent_diels_alder-reagent' ] = 229.84632631
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-s_tetrazine_to_2HCN_N2-reagent'] = 211.09082404
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH3CH3_to_CH2CH2_H2-reagent' ] = 42.18531523
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH3CH2F_to_CH2CH2_HF-reagent' ] = 72.38149908
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH2CHOH_to_CH3CHO-reagent' ] = 70.96576388
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-silylene_insertion-reagent' ] = 105.58418932
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HNCCS_to_HCN_CS-reagent' ] = 107.98244744
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-acrolein_rotation-reagent' ] = 104.52459576
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCONHOH_to_HCOHNHO-reagent' ] = 118.18056521
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HNC_H2_to_H2CNH-reagent' ] = 33.37163870
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-H2CNH_to_HCNH2-reagent' ] = 35.16169022
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCNH2_to_HCN_H2-reagent' ] = 30.58508624
|