This file is indexed.

/usr/share/psi/databases/BAKERJCC96.py is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

"""
| Geometries from Baker and Chan J. Comput. Chem. 17 888 (1996),
|   as reported in Bakken and Helgaker, J. Chem. Phys. 117, 9160 (2002).
| No reference energies defined.

- **cp**  ``'off'``

- **rlxd** ``'off'``

"""
import re
import qcdb

# <<< BAKERJCC96 Database Module >>>
dbse = 'BAKERJCC96'
isOS = 'true'

# <<< Database Members >>>
HRXN = ['HCN_to_HNC', 'HCCH_to_CCH2', 'H2CO_to_H2_CO',
    'parent_diels_alder', 's_tetrazine_to_2HCN_N2', 'CH3CH3_to_CH2CH2_H2',
    'CH3CH2F_to_CH2CH2_HF', 'CH2CHOH_to_CH3CHO', 'silylene_insertion',
    'HNCCS_to_HCN_CS', 'acrolein_rotation', 'HCONHOH_to_HCOHNHO',
    'HNC_H2_to_H2CNH', 'H2CNH_to_HCNH2', 'HCNH2_to_HCN_H2']
HRXN_TEMP = ['parent_diels_alder']

# <<< Chemical Systems Involved >>>
RXNM = {}     # reaction matrix of reagent contributions per reaction
ACTV = {}     # order of active reagents per reaction
ACTV['%s-%s'            % (dbse, 'HCN_to_HNC' )] = ['%s-%s-reagent'      % (dbse, 'HCN_to_HNC')]
RXNM['%s-%s'            % (dbse, 'HCN_to_HNC' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCN_to_HNC')], [+1]))

ACTV['%s-%s'            % (dbse, 'HCCH_to_CCH2' )] = ['%s-%s-reagent'      % (dbse, 'HCCH_to_CCH2')]
RXNM['%s-%s'            % (dbse, 'HCCH_to_CCH2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCCH_to_CCH2')], [+1]))

ACTV['%s-%s'            % (dbse, 'H2CO_to_H2_CO' )] = ['%s-%s-reagent'      % (dbse, 'H2CO_to_H2_CO')]
RXNM['%s-%s'            % (dbse, 'H2CO_to_H2_CO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'H2CO_to_H2_CO')], [+1]))

ACTV['%s-%s'            % (dbse, 'parent_diels_alder' )] = ['%s-%s-reagent'      % (dbse, 'parent_diels_alder')]
RXNM['%s-%s'            % (dbse, 'parent_diels_alder' )] = dict(zip(ACTV['%s-%s' % (dbse, 'parent_diels_alder')], [+1]))

ACTV['%s-%s'            % (dbse, 's_tetrazine_to_2HCN_N2' )] = ['%s-%s-reagent'      % (dbse, 's_tetrazine_to_2HCN_N2')]
RXNM['%s-%s'            % (dbse, 's_tetrazine_to_2HCN_N2' )] = dict(zip(ACTV['%s-%s' % (dbse, 's_tetrazine_to_2HCN_N2')], [+1]))

ACTV['%s-%s'            % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ['%s-%s-reagent'      % (dbse, 'CH3CH3_to_CH2CH2_H2')]
RXNM['%s-%s'            % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH3CH3_to_CH2CH2_H2')], [+1]))

ACTV['%s-%s'            % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ['%s-%s-reagent'      % (dbse, 'CH3CH2F_to_CH2CH2_HF')]
RXNM['%s-%s'            % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH3CH2F_to_CH2CH2_HF')], [+1]))

ACTV['%s-%s'            % (dbse, 'CH2CHOH_to_CH3CHO' )] = ['%s-%s-reagent'      % (dbse, 'CH2CHOH_to_CH3CHO')]
RXNM['%s-%s'            % (dbse, 'CH2CHOH_to_CH3CHO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'CH2CHOH_to_CH3CHO')], [+1]))

ACTV['%s-%s'            % (dbse, 'silylene_insertion' )] = ['%s-%s-reagent'      % (dbse, 'silylene_insertion')]
RXNM['%s-%s'            % (dbse, 'silylene_insertion' )] = dict(zip(ACTV['%s-%s' % (dbse, 'silylene_insertion')], [+1]))

ACTV['%s-%s'            % (dbse, 'HNCCS_to_HCN_CS' )] = ['%s-%s-reagent'      % (dbse, 'HNCCS_to_HCN_CS')]
RXNM['%s-%s'            % (dbse, 'HNCCS_to_HCN_CS' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HNCCS_to_HCN_CS')], [+1]))

ACTV['%s-%s'            % (dbse, 'acrolein_rotation' )] = ['%s-%s-reagent'      % (dbse, 'acrolein_rotation')]
RXNM['%s-%s'            % (dbse, 'acrolein_rotation' )] = dict(zip(ACTV['%s-%s' % (dbse, 'acrolein_rotation')], [+1]))

ACTV['%s-%s'            % (dbse, 'HCONHOH_to_HCOHNHO' )] = ['%s-%s-reagent'      % (dbse, 'HCONHOH_to_HCOHNHO')]
RXNM['%s-%s'            % (dbse, 'HCONHOH_to_HCOHNHO' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCONHOH_to_HCOHNHO')], [+1]))

ACTV['%s-%s'            % (dbse, 'HNC_H2_to_H2CNH' )] = ['%s-%s-reagent'      % (dbse, 'HNC_H2_to_H2CNH')]
RXNM['%s-%s'            % (dbse, 'HNC_H2_to_H2CNH' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HNC_H2_to_H2CNH')], [+1]))

ACTV['%s-%s'            % (dbse, 'H2CNH_to_HCNH2' )] = ['%s-%s-reagent'      % (dbse, 'H2CNH_to_HCNH2')]
RXNM['%s-%s'            % (dbse, 'H2CNH_to_HCNH2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'H2CNH_to_HCNH2')], [+1]))

ACTV['%s-%s'            % (dbse, 'HCNH2_to_HCN_H2' )] = ['%s-%s-reagent'      % (dbse, 'HCNH2_to_HCN_H2')]
RXNM['%s-%s'            % (dbse, 'HCNH2_to_HCN_H2' )] = dict(zip(ACTV['%s-%s' % (dbse, 'HCNH2_to_HCN_H2')], [+1]))

# <<< Reference Values [kcal/mol] >>>
BIND = {}
BIND['%s-%s'            % (dbse, 'HCN_to_HNC'             )] =    0.000
BIND['%s-%s'            % (dbse, 'HCCH_to_CCH2'           )] =    0.000
BIND['%s-%s'            % (dbse, 'H2CO_to_H2_CO'          )] =    0.000
BIND['%s-%s'            % (dbse, 'parent_diels_alder'     )] =    0.000
BIND['%s-%s'            % (dbse, 's_tetrazine_to_2HCN_N2' )] =    0.000
BIND['%s-%s'            % (dbse, 'CH3CH3_to_CH2CH2_H2'    )] =    0.000
BIND['%s-%s'            % (dbse, 'CH3CH2F_to_CH2CH2_HF'   )] =    0.000
BIND['%s-%s'            % (dbse, 'CH2CHOH_to_CH3CHO'      )] =    0.000
BIND['%s-%s'            % (dbse, 'silylene_insertion'     )] =    0.000
BIND['%s-%s'            % (dbse, 'HNCCS_to_HCN_CS'        )] =    0.000
BIND['%s-%s'            % (dbse, 'acrolein_rotation'      )] =    0.000
BIND['%s-%s'            % (dbse, 'HCONHOH_to_HCOHNHO'     )] =    0.000
BIND['%s-%s'            % (dbse, 'HNC_H2_to_H2CNH'        )] =    0.000
BIND['%s-%s'            % (dbse, 'H2CNH_to_HCNH2'         )] =    0.000
BIND['%s-%s'            % (dbse, 'HCNH2_to_HCN_H2'        )] =    0.000

# <<< Comment Lines >>>
TAGL = {}
TAGL['%s-%s'            % (dbse, 'HCN_to_HNC' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HCN_to_HNC' )] = ''
TAGL['%s-%s'            % (dbse, 'HCCH_to_CCH2' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HCCH_to_CCH2' )] = ''
TAGL['%s-%s'            % (dbse, 'H2CO_to_H2_CO' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'H2CO_to_H2_CO' )] = ''
TAGL['%s-%s'            % (dbse, 'parent_diels_alder' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'parent_diels_alder' )] = ''
TAGL['%s-%s'            % (dbse, 's_tetrazine_to_2HCN_N2' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 's_tetrazine_to_2HCN_N2' )] = ''
TAGL['%s-%s'            % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'CH3CH3_to_CH2CH2_H2' )] = ''
TAGL['%s-%s'            % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'CH3CH2F_to_CH2CH2_HF' )] = ''
TAGL['%s-%s'            % (dbse, 'CH2CHOH_to_CH3CHO' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'CH2CHOH_to_CH3CHO' )] = ''
TAGL['%s-%s'            % (dbse, 'silylene_insertion' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'silylene_insertion' )] = ''
TAGL['%s-%s'            % (dbse, 'HNCCS_to_HCN_CS' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HNCCS_to_HCN_CS' )] = ''
TAGL['%s-%s'            % (dbse, 'acrolein_rotation' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'acrolein_rotation' )] = ''
TAGL['%s-%s'            % (dbse, 'HCONHOH_to_HCOHNHO' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HCONHOH_to_HCOHNHO' )] = ''
TAGL['%s-%s'            % (dbse, 'HNC_H2_to_H2CNH' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HNC_H2_to_H2CNH' )] = ''
TAGL['%s-%s'            % (dbse, 'H2CNH_to_HCNH2' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'H2CNH_to_HCNH2' )] = ''
TAGL['%s-%s'            % (dbse, 'HCNH2_to_HCN_H2' )] = ''
TAGL['%s-%s-reagent'    % (dbse, 'HCNH2_to_HCN_H2' )] = ''

# <<< Geometry Specification Strings >>>
GEOS = {}

GEOS['%s-%s-reagent' % (dbse, 'HCN_to_HNC')] = qcdb.Molecule("""
0 1
C  -0.0399606537   1.7574844925   0.0000000000
N   1.2331003808   0.0000000000   0.0000000000
H  -1.1931397271  -1.7574844925   0.0000000000
units bohr
""")
#set { guess gwh """)

GEOS['%s-%s-reagent' % (dbse, 'HCCH_to_CCH2')] = qcdb.Molecule("""
0 1
C  -0.4287449922  -0.0396754553   0.0000000000
C   1.9151999208   0.0000000000   0.0000000000
H  -2.1914826494   0.9243341981   0.0000000000
H   1.1657551200  -2.7344386158   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'H2CO_to_H2_CO')] = qcdb.Molecule("""
0 1
C   0.4656871259   0.8485069310   0.0000000000
O   2.6701879709   0.0000000000   0.0000000000
H  -0.8014735829  -1.2561076240   0.0000000000
H  -2.3344015139   0.4076006930   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'parent_diels_alder')] = qcdb.Molecule("""
0 1
C   2.8332856188   0.0000000000   1.3228081920
C   2.8332856188   0.0000000000  -1.3228081920
C  -2.3253041766   1.1773255830   1.4550890112
C  -2.3253041766   1.1773255830  -1.4550890112
C  -0.9003485915  -0.5867135859   2.6456163840
C  -0.9003485915  -0.5867135859  -2.6456163840
H  -3.5271811018   2.4200543219   2.5397117805
H  -3.5271811018   2.4200543219  -2.5397117805
H   3.2953993811  -1.7330277495   2.2966434467
H   3.2953993811  -1.7330277495  -2.2966434467
H   2.7098759932   1.7961080923   2.2800674415
H   2.7098759932   1.7961080923  -2.2800674415
H   0.3094408240  -1.7857534614   1.5179110011
H   0.3094408240  -1.7857534614  -1.5179110011
H  -1.0137937565  -0.6962109120   4.6804210291
H  -1.0137937565  -0.6962109120  -4.6804210291
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 's_tetrazine_to_2HCN_N2')] = qcdb.Molecule("""
0 1
N   1.4172944914   2.0866021582   0.0000000000
N  -1.4172944914   2.0866021582   0.0000000000
N   1.1338355931  -2.3320847650   0.0000000000
N  -1.1338355931  -2.3320847650   0.0000000000
C   2.5511300846   0.1227413034   0.0000000000
C  -2.5511300846   0.1227413034   0.0000000000
H   4.5920341522   0.1227413034   0.0000000000
H  -4.5920341522   0.1227413034   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'CH3CH3_to_CH2CH2_H2')] = qcdb.Molecule("""
0 1
C  -0.8859807599  -0.5993092127   0.0000000000
C   1.7490330691   0.0000000000   0.0000000000
H  -2.8124044495   1.4800624400   0.0000000000
H   2.6980243606  -0.2473177820   1.8113616294
H   2.6980243606  -0.2473177820  -1.8113616294
H  -1.6346529801  -1.2327446580   1.8113616294
H  -1.6346529801  -1.2327446580  -1.8113616294
H  -0.1773906205   2.0793716527   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'CH3CH2F_to_CH2CH2_HF')] = qcdb.Molecule("""
0 1
C  -1.2114041996   0.8408020855   0.0000000000
C   0.2710949367  -1.4185486447   0.0000000000
F   3.5694675519   0.0000000000   0.0000000000
H   0.8525043764   2.7837833236   0.0000000000
H   0.3440183107  -2.4023246321   1.7866606845
H   0.3440183107  -2.4023246321  -1.7866606845
H  -2.0848496434   1.2993062499   1.7866606845
H  -2.0848496434   1.2993062499  -1.7866606845
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'CH2CHOH_to_CH3CHO')] = qcdb.Molecule("""
0 1
C  -0.8638822546   0.0813052799  -1.2005986026
C   0.8568384546   0.0000000000   0.8814626606
O   0.0000000000   0.0000000000   3.1838367722
H  -0.6251819034   1.8414643222  -2.2435002266
H  -1.6228517906  -0.1159760771   1.2188517026
H   2.8765713088  -0.2172341086   0.5404787182
H  -0.6214938148  -1.5895594164  -2.3805310244
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'silylene_insertion')] = qcdb.Molecule("""
0 1
C  -1.0718066965  -0.1928298581  -2.5299430030
C   1.0250683554   0.0000000000  -0.5763517845
Si  0.0000000000   0.0000000000   3.6474101733
H  -2.1062850458  -1.9954618846  -2.4930629368
H   2.3105025336   0.4726358860   5.1508238324
H  -0.1255963623  -1.7429478038   1.4155380424
H  -1.8281836996   2.0590612062   4.1373801504
H   2.1120964044   1.7375623482  -0.9231008641
H   2.3199575761  -1.5749557960  -0.8688541874
H  -0.2137259723  -0.1257146643  -4.4428207722
H  -2.4220270929   1.3626505664  -2.5170186506
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'HNCCS_to_HCN_CS')] = qcdb.Molecule("""
0 1
H  -3.8046808257   0.6512707943   0.0000000000
N  -2.5162100514  -0.7568079564   0.0000000000
C  -0.3115625330  -1.2877146607   0.0000000000
C   2.4597092296   0.8743461413   0.0000000000
S   5.2948168550   0.0000000000   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'acrolein_rotation')] = qcdb.Molecule("""
0 1
C  -1.2039490098   0.6299819763  -1.8443710751
C   1.2056120532   0.0000000000   1.9839551839
C   0.0666798969  -0.9449729645  -0.3221285864
O   0.0000000000   0.0000000000   3.9490688445
H  -2.0522570986  -0.0738599558  -3.5620058833
H   3.1211832712   0.7038419322   1.9619811778
H   0.2424607776  -2.9181815653  -0.8128813887
H  -1.3797298905   2.6031905771  -1.3536182728
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'HCONHOH_to_HCOHNHO')] = qcdb.Molecule("""
0 1
O  -3.5099961475   0.0808581274   0.0000000000
O   3.0085718011   0.0000000000   0.0000000000
C  -1.2730134573   1.0962433404   0.0000000000
N   0.4462296750  -0.6585505903   0.0000000000
H  -0.7144888327   3.0985015808   0.0000000000
H  -2.0229706827  -2.0506512675   0.0000000000
H   4.0656676440  -1.5664011909   0.0000000000
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'HNC_H2_to_H2CNH')] = qcdb.Molecule("""
0 1
H   1.3134432637  -0.2040854069   3.0062409561
H  -2.0477645147   0.2508396893  -1.7949671795
H   0.1303083495  -0.0467542824  -2.3515361651
N   0.0000000000   0.0000000000   1.6630059611
C   0.6040129016   0.0000000000  -0.5227435726
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'H2CNH_to_HCNH2')] = qcdb.Molecule("""
0 1
H  -1.5502016034   1.0481518658   1.5179225979
H   0.3563149954   1.0481518658  -2.1765524295
H   0.1539684632  -2.0963037316   0.1645151437
N   0.0000000000   0.0000000000   1.2546414423
C   1.0399181448   0.0000000000  -0.7605267545
units bohr
""")

GEOS['%s-%s-reagent' % (dbse, 'HCNH2_to_HCN_H2')] = qcdb.Molecule("""
0 1
C   1.4474353774   0.0000000000  -1.1288243208
N   0.0000000000   0.0000000000   0.9719363835
H   3.2098577258   0.2829784675  -0.5084575223
H  -2.3053050298  -1.2021721464   0.4824091612
H  -2.3519880735   0.9191936788   0.1829362984
units bohr
""")

#########################################################################

# <<< Supplementary Quantum Chemical Results >>>
DATA = {}

DATA['NUCLEAR REPULSION ENERGY'] = {}
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCN_to_HNC-reagent'            ] =      23.31219465
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCCH_to_CCH2-reagent'          ] =      24.00207708
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-H2CO_to_H2_CO-reagent'         ] =      29.08166284
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-parent_diels_alder-reagent'    ] =     229.84632631
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-s_tetrazine_to_2HCN_N2-reagent'] =     211.09082404
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH3CH3_to_CH2CH2_H2-reagent'   ] =      42.18531523
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH3CH2F_to_CH2CH2_HF-reagent'  ] =      72.38149908
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-CH2CHOH_to_CH3CHO-reagent'     ] =      70.96576388
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-silylene_insertion-reagent'    ] =     105.58418932
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HNCCS_to_HCN_CS-reagent'       ] =     107.98244744
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-acrolein_rotation-reagent'     ] =     104.52459576
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCONHOH_to_HCOHNHO-reagent'    ] =     118.18056521
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HNC_H2_to_H2CNH-reagent'       ] =      33.37163870
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-H2CNH_to_HCNH2-reagent'        ] =      35.16169022
DATA['NUCLEAR REPULSION ENERGY']['BAKERJCC96-HCNH2_to_HCN_H2-reagent'       ] =      30.58508624