/usr/share/psi/plugin/aointegrals.cc.template is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /*
*@BEGIN LICENSE
*
* @plugin@ by Psi4 Developer, a plugin to:
*
* PSI4: an ab initio quantum chemistry software package
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*@END LICENSE
*/
#include <libplugin/plugin.h>
#include <psi4-dec.h>
#include <libparallel/parallel.h>
#include <liboptions/liboptions.h>
#include <libmints/mints.h>
#include <libpsio/psio.h>
INIT_PLUGIN
namespace psi{ namespace @plugin@ {
extern "C"
int read_options(std::string name, Options &options)
{
if (name == "@PLUGIN@"|| options.read_globals()) {
/*- The amount of information printed
to the output file -*/
options.add_int("PRINT", 1);
/*- Whether to compute two-electron integrals -*/
options.add_bool("DO_TEI", true);
}
return true;
}
extern "C"
PsiReturnType @plugin@(Options &options)
{
int print = options.get_int("PRINT");
int doTei = options.get_bool("DO_TEI");
boost::shared_ptr<Molecule> molecule = Process::environment.molecule();
// Form basis object:
// Create a basis set parser object.
boost::shared_ptr<BasisSetParser> parser(new Gaussian94BasisSetParser());
// Construct a new basis set.
boost::shared_ptr<BasisSet> aoBasis = BasisSet::construct(parser, molecule, "BASIS");
// The integral factory oversees the creation of integral objects
boost::shared_ptr<IntegralFactory> integral(new IntegralFactory
(aoBasis, aoBasis, aoBasis, aoBasis));
// N.B. This should be called after the basis has been built, because the geometry has not been
// fully initialized until this time.
molecule->print();
int nbf[] = { aoBasis->nbf() };
double nucrep = molecule->nuclear_repulsion_energy();
psi::outfile->Printf("\n Nuclear repulsion energy: %16.8f\n\n", nucrep);
// The matrix factory can create matrices of the correct dimensions...
boost::shared_ptr<MatrixFactory> factory(new MatrixFactory);
factory->init_with(1, nbf, nbf);
// Form the one-electron integral objects from the integral factory
boost::shared_ptr<OneBodyAOInt> sOBI(integral->ao_overlap());
boost::shared_ptr<OneBodyAOInt> tOBI(integral->ao_kinetic());
boost::shared_ptr<OneBodyAOInt> vOBI(integral->ao_potential());
// Form the one-electron integral matrices from the matrix factory
SharedMatrix sMat(factory->create_matrix("Overlap"));
SharedMatrix tMat(factory->create_matrix("Kinetic"));
SharedMatrix vMat(factory->create_matrix("Potential"));
SharedMatrix hMat(factory->create_matrix("One Electron Ints"));
// Compute the one electron integrals, telling each object where to store the result
sOBI->compute(sMat);
tOBI->compute(tMat);
vOBI->compute(vMat);
sMat->print();
tMat->print();
vMat->print();
// Form h = T + V by first cloning T and then adding V
hMat->copy(tMat);
hMat->add(vMat);
hMat->print();
if(doTei){
psi::outfile->Printf("\n Two-electron Integrals\n\n");
// Now, the two-electron integrals
boost::shared_ptr<TwoBodyAOInt> eri(integral->eri());
// The buffer will hold the integrals for each shell, as they're computed
const double *buffer = eri->buffer();
// The iterator conveniently lets us iterate over functions within shells
AOShellCombinationsIterator shellIter = integral->shells_iterator();
int count=0;
for (shellIter.first(); shellIter.is_done() == false; shellIter.next()) {
// Compute quartet
if (eri->compute_shell(shellIter)) {
// From the quartet get all the integrals
AOIntegralsIterator intIter = shellIter.integrals_iterator();
for (intIter.first(); intIter.is_done() == false; intIter.next()) {
int p = intIter.i();
int q = intIter.j();
int r = intIter.k();
int s = intIter.l();
psi::outfile->Printf("\t(%2d %2d | %2d %2d) = %20.15f\n",
p, q, r, s, buffer[intIter.index()]);
++count;
}
}
}
psi::outfile->Printf("\n\tThere are %d unique integrals\n\n", count);
}
return Success;
}
}} // End Namespaces
|