/usr/share/psi/plugin/scf.cc.template is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 | /*
*@BEGIN LICENSE
*
* @plugin@ by Psi4 Developer, a plugin to:
*
* PSI4: an ab initio quantum chemistry software package
*
* This program is free software; you can redistribute it and/or modify
* it under the terms of the GNU General Public License as published by
* the Free Software Foundation; either version 2 of the License, or
* (at your option) any later version.
*
* This program is distributed in the hope that it will be useful,
* but WITHOUT ANY WARRANTY; without even the implied warranty of
* MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
* GNU General Public License for more details.
*
* You should have received a copy of the GNU General Public License along
* with this program; if not, write to the Free Software Foundation, Inc.,
* 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
*
*@END LICENSE
*/
#include <libplugin/plugin.h>
#include <psi4-dec.h>
#include <liboptions/liboptions.h>
#include <libmints/mints.h>
#include <scf.h>
INIT_PLUGIN
namespace psi{ namespace @plugin@ {
extern "C"
int read_options(std::string name, Options &options)
{
if (name == "@PLUGIN@"|| options.read_globals()) {
/*- The amount of information printed
to the output file -*/
options.add_int("PRINT", 1);
/*- How tightly to converge the energy -*/
options.add_double("E_CONVERGENCE", 1.0E-10);
/*- How tightly to converge the density -*/
options.add_double("D_CONVERGENCE", 1.0E-6);
/*- How many iteration to allow -*/
options.add_int("SCF_MAXITER", 50);
}
return true;
}
extern "C"
PsiReturnType @plugin@(Options &options)
{
// Start with some demos of the matrix toolkit (no symmetry in this case)
if(options.get_int("PRINT") > 5){
// Make a 3 X 3 matrix
SharedMatrix matrix(new Matrix("A Matrix", 3, 3));
// Make a vector of length 3
SharedVector vector(new Vector("A Vector", 3));
// vector = [ 1, 2, 3 ]
for(int i = 0; i < 3; ++i)
vector->set(i, i+1);
psi::outfile->Printf("After creating\n");
vector->print();
matrix->print();
// Assign the elements of the vector to the diagonal of matrix
matrix->set_diagonal(vector);
psi::outfile->Printf("After assigning the diagonals\n");
matrix->print();
// Try some matrix multiplies
SharedMatrix identity(new Matrix("Identity", 3, 3));
SharedMatrix new_matrix(new Matrix("New Matrix", 3, 3));
identity->identity();
identity->scale(2.0);
new_matrix->gemm(false, false, 1.0, identity, matrix, 0.0);
psi::outfile->Printf("The product, from the built-in function");
new_matrix->print();
// Now, do the same by hand
for(int row = 0; row < 3; ++row){
for(int col = 0; col < 0; ++col){
double val = 0.0;
for(int link = 0; link < 3; ++link){
val += identity->get(row, link) * matrix->get(row, link);
}
new_matrix->set(row, col, val);
}
}
psi::outfile->Printf("The product, from the hand computed version");
matrix->print();
// Now diagonalize the matrix, ordering by ascending order of eigenvalues
SharedMatrix evecs(new Matrix("Matrix Eigenvectors", 3, 3));
SharedVector evals(new Vector("Matrix Eigenvalues", 3));
matrix->diagonalize(evecs, evals, ascending);
psi::outfile->Printf("After diagonalizing\n");
matrix->print();
evecs->print();
evals->print();
// Compute U(t) D U, where U are the eigenvectors and D has the evals on the diagonal
// and (t) means the transpose. This should, yield the original matrix
// First, the hard(er) way
SharedMatrix D(new Matrix("D (Evals on diagonal)", 3, 3));
D->set_diagonal(evals);
SharedMatrix DU(new Matrix("D X U", 3, 3));
DU->gemm(false, false, 1.0, D, evecs, 0.0);
matrix->gemm(true, false, 1.0, evecs, DU, 0.0);
psi::outfile->Printf("Matrix Reconstructed from the evecs/evals (the hard way)\n");
matrix->print();
// Now the easy way. If we wanted U D U(t), we would call back_transform instead
// Also, D->transform(evecs) would do the same thing, but store the result in D itself.
matrix->transform(D, evecs);
psi::outfile->Printf("Matrix Reconstructed from the evecs/evals (the easy way)\n");
matrix->print();
// Finally, zero out the matrix
matrix->zero();
psi::outfile->Printf("After zeroing\n");
matrix->print();
}
// Build an SCF object, and tell it to compute its energy
SCF scf(options);
scf.compute_energy();
return Success;
}
}} // End Namespaces
|