This file is indexed.

/usr/share/psi/plugin/scf.cc.template is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
/*
 *@BEGIN LICENSE
 *
 * @plugin@ by Psi4 Developer, a plugin to:
 *
 * PSI4: an ab initio quantum chemistry software package
 *
 * This program is free software; you can redistribute it and/or modify
 * it under the terms of the GNU General Public License as published by
 * the Free Software Foundation; either version 2 of the License, or
 * (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License along
 * with this program; if not, write to the Free Software Foundation, Inc.,
 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 *
 *@END LICENSE
 */

#include <libplugin/plugin.h>
#include <psi4-dec.h>
#include <liboptions/liboptions.h>
#include <libmints/mints.h>
#include <scf.h>

INIT_PLUGIN

namespace psi{ namespace @plugin@ {

extern "C"
int read_options(std::string name, Options &options)
{
    if (name == "@PLUGIN@"|| options.read_globals()) {
        /*- The amount of information printed
            to the output file -*/
        options.add_int("PRINT", 1);
        /*- How tightly to converge the energy -*/
        options.add_double("E_CONVERGENCE", 1.0E-10);
        /*- How tightly to converge the density -*/
        options.add_double("D_CONVERGENCE", 1.0E-6);
        /*- How many iteration to allow -*/
        options.add_int("SCF_MAXITER", 50);
    }

    return true;
}

extern "C"
PsiReturnType @plugin@(Options &options)
{

    // Start with some demos of the matrix toolkit (no symmetry in this case)
    if(options.get_int("PRINT") > 5){
        // Make a 3 X 3 matrix
        SharedMatrix matrix(new Matrix("A Matrix", 3, 3));
        // Make a vector of length 3
        SharedVector vector(new Vector("A Vector", 3));
        // vector = [ 1, 2, 3 ]
        for(int i = 0; i < 3; ++i)
            vector->set(i, i+1);
        psi::outfile->Printf("After creating\n");
        vector->print();
        matrix->print();

        // Assign the elements of the vector to the diagonal of matrix
        matrix->set_diagonal(vector);
        psi::outfile->Printf("After assigning the diagonals\n");
        matrix->print();

        // Try some matrix multiplies
        SharedMatrix identity(new Matrix("Identity", 3, 3));
        SharedMatrix new_matrix(new Matrix("New Matrix", 3, 3));
        identity->identity();
        identity->scale(2.0);
        new_matrix->gemm(false, false, 1.0, identity, matrix, 0.0);
        psi::outfile->Printf("The product, from the built-in function");
        new_matrix->print();
        // Now, do the same by hand
        for(int row = 0; row < 3; ++row){
            for(int col = 0; col < 0; ++col){
                double val = 0.0;
                for(int link = 0; link < 3; ++link){
                    val += identity->get(row, link) * matrix->get(row, link);
                }
                new_matrix->set(row, col, val);
            }
        }
        psi::outfile->Printf("The product, from the hand computed version");
        matrix->print();

        // Now diagonalize the matrix, ordering by ascending order of eigenvalues
        SharedMatrix evecs(new Matrix("Matrix Eigenvectors", 3, 3));
        SharedVector evals(new Vector("Matrix Eigenvalues", 3));
        matrix->diagonalize(evecs, evals, ascending);
        psi::outfile->Printf("After diagonalizing\n");
        matrix->print();
        evecs->print();
        evals->print();
        
        // Compute U(t) D U, where U are the eigenvectors and D has the evals on the diagonal
        // and (t) means the transpose. This should, yield the original matrix
        // First, the hard(er) way
        SharedMatrix D(new Matrix("D (Evals on diagonal)", 3, 3));
        D->set_diagonal(evals);
        SharedMatrix DU(new Matrix("D X U", 3, 3));
        DU->gemm(false, false, 1.0, D, evecs, 0.0);
        matrix->gemm(true, false, 1.0, evecs, DU, 0.0);
        psi::outfile->Printf("Matrix Reconstructed from the evecs/evals (the hard way)\n");
        matrix->print();
        // Now the easy way.  If we wanted U D U(t), we would call back_transform instead
        // Also, D->transform(evecs) would do the same thing, but store the result in D itself.
        matrix->transform(D, evecs);
        psi::outfile->Printf("Matrix Reconstructed from the evecs/evals (the easy way)\n");
        matrix->print();

        // Finally, zero out the matrix
        matrix->zero();
        psi::outfile->Printf("After zeroing\n");
        matrix->print();
    }

    // Build an SCF object, and tell it to compute its energy
    SCF scf(options);
    scf.compute_energy();

    return Success;
}

}} // End Namespaces