This file is indexed.

/usr/share/psi/python/qcdb/vecutil.py is in psi4-data 1:0.3-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#

r"""File for accessory procedures in the chem module.
Credit for the libmints vector3 class to Justin M. Turney and
incremental improvements by other psi4 developers.

"""
import math
import copy
from exceptions import *

ZERO = 1.0E-14


def norm(v):
    """Compute the magnitude of vector *v*."""
    return math.sqrt(sum(v[i] * v[i] for i in range(len(v))))


def add(v, u):
    """Compute sum of vectors *v* and *u*."""
    return [u[i] + v[i] for i in range(len(v))]


def sub(v, u):
    """Compute difference of vectors *v* - *u*."""
    return [v[i] - u[i] for i in range(len(v))]


def dot(v, u):
    """Compute dot product of vectors *v* and *u*."""
    return sum(u[i] * v[i] for i in range(len(v)))


def scale(v, d):
    """Compute by-element scale by *d* of vector *v*."""
    return [d * v[i] for i in range(len(v))]


def naivemult(v, u):
    """Compute by-element multiplication of vectors *v* and *u*."""
    if len(u) != len(v):
        raise ValidationError('naivemult() only defined for vectors of same length \n')
    return [u[i] * v[i] for i in range(len(v))]


def normalize(v):
    """Compute normalized vector *v*."""
    vmag = norm(v)
    return [v[i] / vmag  for i in range(len(v))]


def distance(v, u):
    """Compute the distance between points defined by vectors *v* and *u*."""
    return norm(sub(v, u))


def cross(v, u):
    """Compute cross product of length 3 vectors *v* and *u*."""
    if len(u) != 3 or len(v) != 3:
        raise ValidationError('cross() only defined for vectors of length 3\n')
    return [v[1] * u[2] - v[2] * u[1],
            v[2] * u[0] - v[0] * u[2],
            v[0] * u[1] - v[1] * u[0]]


def rotate(v, theta, axis):
    """Rotate length 3 vector *v* about *axis* by *theta* radians."""
    if len(v) != 3 or len(axis) != 3:
        raise ValidationError('rotate() only defined for vectors of length 3\n')

    unitaxis = normalize(copy.deepcopy(axis))
    # split into parallel and perpendicular components along axis
    parallel = scale(axis, dot(v, axis) / dot(axis, axis))
    perpendicular = sub(v, parallel)
    # form unit vector perpendicular to parallel and perpendicular
    third_axis = perp_unit(axis, perpendicular)
    third_axis = scale(third_axis, norm(perpendicular))

    result = add(parallel, add(scale(perpendicular, math.cos(theta)), scale(third_axis, math.sin(theta))))
    for item in range(len(result)):
        if math.fabs(result[item]) < ZERO:
            result[item] = 0.0
    return result


def perp_unit(u, v):
    """Compute unit vector perpendicular to length 3 vectors *u* and *v*."""
    if len(u) != 3 or len(v) != 3:
        raise ValidationError('perp_unit() only defined for vectors of length 3\n')

    # try cross product
    result = cross(u, v)
    resultdotresult = dot(result, result)

    if resultdotresult < 1.E-16:
        # cross product is too small to normalize
        # find the largest of this and v
        dotprodt = dot(u, u)
        dotprodv = dot(v, v)
        if dotprodt < dotprodv:
            d = copy.deepcopy(v)
            dotprodd = dotprodv
        else:
            d = copy.deepcopy(u)
            dotprodd = dotprodt

        # see if d is big enough
        if dotprodd < 1.e-16:
            # choose an arbitrary vector, since the biggest vector is small
            result = [1.0, 0.0, 0.0]
            return result
        else:
            # choose a vector perpendicular to d
            # choose it in one of the planes xy, xz, yz
            # choose the plane to be that which contains the two largest components of d
            absd = [math.fabs(d[0]), math.fabs(d[1]), math.fabs(d[2])]
            if (absd[1] - absd[0]) > 1.0e-12:
            #if absd[0] < absd[1]:
                axis0 = 1
                if (absd[2] - absd[0]) > 1.0e-12:
                #if absd[0] < absd[2]:
                    axis1 = 2
                else:
                    axis1 = 0
            else:
                axis0 = 0
                if (absd[2] - absd[1]) > 1.0e-12:
                #if absd[1] < absd[2]:
                    axis1 = 2
                else:
                    axis1 = 1
            result = [0.0, 0.0, 0.0]
            # do the pi/2 rotation in the plane
            result[axis0] = d[axis1]
            result[axis1] = -1.0 * d[axis0]
        result = normalize(result)
        return result

    else:
        # normalize the cross product and return the result
        result = scale(result, 1.0 / math.sqrt(resultdotresult))
        return result


def determinant(mat):
    """Given 3x3 matrix *mat*, compute the determinat

    """
    if len(mat) != 3 or len(mat[0]) != 3 or len(mat[1]) != 3 or len(mat[2]) != 3:
        raise ValidationError('determinant() only defined for arrays of dimension 3x3\n')

    det = mat[0][0] * mat[1][1] * mat[2][2] - mat[0][2] * mat[1][1] * mat[2][0] + \
          mat[0][1] * mat[1][2] * mat[2][0] - mat[0][1] * mat[1][0] * mat[2][2] + \
          mat[0][2] * mat[1][0] * mat[2][1] - mat[0][0] * mat[1][2] * mat[2][1]
    return det


def diagonalize3x3symmat(M):
    """Given an real symmetric 3x3 matrix *M*, compute the eigenvalues

    """
    if len(M) != 3 or len(M[0]) != 3 or len(M[1]) != 3 or len(M[2]) != 3:
        raise ValidationError('diagonalize3x3symmat() only defined for arrays of dimension 3x3\n')

    A = copy.deepcopy(M)  # Symmetric input matrix
    Q = [[1, 0, 0], [0, 1, 0], [0, 0, 1]]  # Storage buffer for eigenvectors
    w = [A[0][0], A[1][1], A[2][2]]  # Storage buffer for eigenvalues
    # sd, so                  # Sums of diagonal resp. off-diagonal elements
    # s, c, t                 # sin(phi), cos(phi), tan(phi) and temporary storage
    # g, h, z, theta          # More temporary storage

    # Calculate SQR(tr(A))
    sd = 0.0
    for i in range(3):
        sd += math.fabs(w[i])
    sd = sd * sd

    # Main iteration loop
    for nIter in range(50):

        # Test for convergence
        so = 0.0
        for p in range(3):
            for q in range(p + 1, 3):
                so += math.fabs(A[p][q])
        if so == 0.0:
            return w, Q  # return eval, evec

        if nIter < 4:
            thresh = 0.2 * so / (3 * 3)
        else:
            thresh = 0.0

        # Do sweep
        for p in range(3):
            for q in range(p + 1, 3):

                g = 100.0 * math.fabs(A[p][q])
                if nIter > 4  and (math.fabs(w[p]) + g == math.fabs(w[p])) and \
                    (math.fabs(w[q]) + g == math.fabs(w[q])):
                    A[p][q] = 0.0

                elif math.fabs(A[p][q]) > thresh:

                    # Calculate Jacobi transformation
                    h = w[q] - w[p]
                    if math.fabs(h) + g == math.fabs(h):
                        t = A[p][q] / h
                    else:
                        theta = 0.5 * h / A[p][q]
                        if theta < 0.0:
                            t = -1.0 / (math.sqrt(1.0 + theta * theta) - theta)
                        else:
                            t = 1.0 / (math.sqrt(1.0 + theta * theta) + theta)

                    c = 1.0 / math.sqrt(1.0 + t * t)
                    s = t * c
                    z = t * A[p][q]

                    # Apply Jacobi transformation
                    A[p][q] = 0.0
                    w[p] -= z
                    w[q] += z

                    for r in range(p):
                        t = A[r][p]
                        A[r][p] = c * t - s * A[r][q]
                        A[r][q] = s * t + c * A[r][q]

                    for r in range(p + 1, q):
                        t = A[p][r]
                        A[p][r] = c * t - s * A[r][q]
                        A[r][q] = s * t + c * A[r][q]

                    for r in range(q + 1, 3):
                        t = A[p][r]
                        A[p][r] = c * t - s * A[q][r]
                        A[q][r] = s * t + c * A[q][r]

                    # Update eigenvectors
                    for r in range(3):
                        t = Q[r][p]
                        Q[r][p] = c * t - s * Q[r][q]
                        Q[r][q] = s * t + c * Q[r][q]

    return None


def zero(m, n):
    """ Create zero matrix"""
    new_matrix = [[0 for row in range(n)] for col in range(m)]
    return new_matrix


def identity(m):
    """Create identity matrix"""
    new_matrix = zero(m, m)
    for i in range(m):
        new_matrix[i][i] = 1.0
    return new_matrix


def show(matrix):
    """ Print out matrix"""
    for col in matrix:
        print col


def mscale(matrix, d):
    """Return *matrix* scaled by scalar *d*"""
    for i in range(len(matrix)):
        for j in range(len(matrix[0])):
            matrix[i][j] *= d
    return matrix


def mult(matrix1, matrix2):
    """ Matrix multiplication"""
    if len(matrix1[0]) != len(matrix2):
        # Check matrix dimensions
        raise ValidationError('Matrices must be m*n and n*p to multiply!')

    else:
        # Multiply if correct dimensions
        try:
            new_matrix = zero(len(matrix1), len(matrix2[0]))
            for i in range(len(matrix1)):
                for j in range(len(matrix2[0])):
                    for k in range(len(matrix2)):
                        new_matrix[i][j] += matrix1[i][k] * matrix2[k][j]
        except TypeError:
            new_matrix = zero(len(matrix1), 1)
            for i in range(len(matrix1)):
                for k in range(len(matrix2)):
                    new_matrix[i][0] += matrix1[i][k] * matrix2[k]
        return new_matrix


def transpose(matrix):
    """Return matrix transpose"""
    if len(matrix[0]) != len(matrix):
        # Check matrix dimensions
        raise ValidationError('Matrices must be square.')

    tmat = [list(i) for i in zip(*matrix)]
    return tmat


def matadd(matrix1, matrix2, fac1=1.0, fac2=1.0):
    """Matrix addition"""
    if (len(matrix1[0]) != len(matrix2[0])) or (len(matrix1) != len(matrix2)):
        raise ValidationError('Matrices must be same dimension to add.')
    new_matrix = zero(len(matrix1), len(matrix1[0]))
    for i in range(len(matrix1)):
        for j in range(len(matrix1[0])):
            new_matrix[i][j] = fac1 * matrix1[i][j] + fac2 * matrix2[i][j]
    return new_matrix