/usr/share/psi/scripts/ixyz2database.py is in psi4-data 1:0.3-5.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 | #!/usr/bin/env python
#
#@BEGIN LICENSE
#
# PSI4: an ab initio quantum chemistry software package
#
# This program is free software; you can redistribute it and/or modify
# it under the terms of the GNU General Public License as published by
# the Free Software Foundation; either version 2 of the License, or
# (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License along
# with this program; if not, write to the Free Software Foundation, Inc.,
# 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
#
#@END LICENSE
#
import sys
import re
import os
import glob
sys.path.append(os.path.dirname(__file__) + '/../python')
sys.path.append(os.environ.get('PSIDATADIR')+'/python')
try:
import qcdb
except ImportError:
print """Cannot load qcdb python module. Run this script in situ or append the psi4/lib/python directory to $PYTHONPATH."""
exit(1)
"""
Utility: This script converts a set of geometry files in XYZ format into
a python database file for psi4 and qcdb scripts.
Instructions: Detailed instructions may be found at
http://sirius.chem.vt.edu/psi4manual/latest/quickadddatabase.html .
In short, move all XYZ files intended for a database into a directory
and run this script from that directory. Answer a few questions about
the intended database. Edit the resulting database.py file if necessary,
then copy it into psi4/lib/databases/ . Its contents can be accessed as
normal through the db() wrapper with no further configuration or recompiling.
Created: Monday, December 21, 2009, LAB
Last Modified: Tuesday, September 10, 2013, LAB
"""
# instructions
print """
Welcome to ixyz2database.
Just fill in the variables when prompted.
Hit ENTER to accept default.
Strings should not be in quotes.
Elements in arrays should be space-delimited.
"""
# query database name
print """
Name your database.
Recommend 3-8 characters, all capitalized letters.
e.g., MINE or BZ6
"""
user_obedient = False
while not user_obedient:
dbse = raw_input(' dbse = ').strip()
if dbse.isalnum():
user_obedient = True
# query file extension
print """
XYZ file extension.
All files with this extension in the current directory will be processed
Additionally, all files with extension p4m in the current dir will be processed as psi4 mol format
"""
fext = raw_input(' fext = [xyz] ').strip()
if fext == "":
fext = 'xyz'
# query xyz file comment line
print """
What should line two of the XYZ file be used for (needn't be specially formatted in all files)
[cgmp] Treat first item in line as system charge, second as multiplicity, rest as comment
[comment] Treat content as text for the comment line
[trash] Ignore content
"""
user_obedient = False
while not user_obedient:
line2 = raw_input(' line2 = [cgmp] ').strip().lower()
if line2 == "":
line2 = 'cgmp'
if line2 == 'comment' or line2 == 'cgmp' or line2 == 'trash':
user_obedient = True
# query closed shell
print """
Are open-shell or non-singlets are present among your systems (or subsystems in the case of dimers)?
"""
isOS = qcdb.query_yes_no(' isOS =', False)
# query database type
print """
What is the nature of the systems in your incipient database?
[1] I have a bunch of plain molecules (no need to act on any subsystems)
that I want to be able to act upon in parallel.
[2] I have a bunch of molecules that I want to form into a database
whose reference quantity corresponds to various combinations thereof.
[3] I have a bunch of dimers (only dimer, no monomer, files should be present)
that I want to form into a database whose reference quantity is interaction energy.
Your final database may of course resemble any combination of these choices.
This is but a humble script to get you started.
"""
user_obedient = False
while not user_obedient:
route = raw_input(' route = ').strip().lower()
if route.isdigit():
route = int(route)
if route == 1 or route == 2 or route == 3:
user_obedient = True
# query number of reactions
if route == 2:
print """
How many reactions (things that have a reference quantity, as opposed
to reagents that have a geometry) are in the database?
"""
user_obedient = False
while not user_obedient:
Nrxn = raw_input(' Nrxn = ').strip().lower()
if Nrxn.isdigit():
Nrxn = int(Nrxn)
user_obedient = True
else:
Nrxn = 1 # TODO really need?
# initialize containers
spy = ""
gpy = ""
HRXN = range(1, Nrxn + 1)
BINDRXN = {}
TAGLRXN = {}
for rxn in HRXN:
BINDRXN[rxn] = None # "nan" ? TODO
TAGLRXN[rxn] = 'Reaction %s' % (rxn)
# reagent geometry section
gpy += "\n# <<< Geometry Specification Strings >>>\n"
gpy += "GEOS = {}\n\n"
count = 0
HRGT = []
TAGLRGT = {}
BINDRGT = {}
print "\n%-25s %6s %6s %6s %6s %6s\t\t%s\n" % ("system", "CHGsyst", "MLPsyst", "Natom", "Nmol1", "Nmol2", "Fragmentation Pattern")
for xyzfile in (glob.glob('*.' + fext) + glob.glob('*.p4m')):
# ascertain system name and open file
system = os.path.splitext(xyzfile)[0]
HRGT.append(system)
f = open(xyzfile, 'r')
text = f.readlines()
f.close()
# use Molecule object to read geometry in xyz file
if xyzfile.endswith(fext):
mol = qcdb.Molecule.init_with_xyz(xyzfile, no_com=True, no_reorient=True)
else:
mol = qcdb.Molecule(''.join(text))
Nsyst = mol.natom()
# alter second line
if line2 == 'cgmp':
pass
elif line2 == 'comment':
mol.set_molecular_charge(0)
mol.fragment_charges[0] = 0
mol.set_multiplicity(1)
mol.fragment_multiplicities[0] = 1
mol.tagline = text[1].strip()
elif line2 == 'trash':
mol.set_molecular_charge(0)
mol.fragment_charges[0] = 0
mol.set_multiplicity(1)
mol.fragment_multiplicities[0] = 1
mol.tagline = ""
CHGsyst = mol.molecular_charge()
MLPsyst = mol.multiplicity()
TAGLRGT[system] = mol.tagline
BINDRGT[system] = None # "nan" ? # TODO
if route == 3 and mol.nfragments() == 1:
frag_pattern = mol.BFS()
mol = mol.auto_fragments()
Nmol1 = mol.fragments[0][1] - mol.fragments[0][0] + 1
Nmol2 = mol.fragments[1][1] - mol.fragments[1][0] + 1
print "%-25s %6d %6d %6d %6d %6d\t\t%s" % (system, CHGsyst, MLPsyst, Nsyst, Nmol1, Nmol2, frag_pattern)
gpy += "GEOS['%%s-%%s-%%s' %% (dbse, '%s', 'dimer')] = qcdb.Molecule(\"\"\"\n" % (str(system))
if mol.nfragments() != 2:
print "ERROR: 2 fragments not detected for system %s." % (system)
print " If you really have trimers or above, contact LAB to modify this script.\n"
sys.exit()
else:
print "%-25s %6d %6d %6d %6d %6d" % (system, CHGsyst, MLPsyst, Nsyst, Nsyst, 0)
gpy += "GEOS['%%s-%%s-%%s' %% (dbse, '%s', 'reagent')] = qcdb.Molecule(\"\"\"\n" % (str(system))
gpy += mol.create_psi4_string_from_molecule()
gpy += """\"\"\")\n\n"""
count += 1
Nrgt = len(HRGT)
if Nrgt != count:
print "ERROR: discrepancy in counting systems $Nrgt vs $count!\n"
sys.exit()
# python database file
docstring = """\"\"\"
| Database of <description of members and reference energy type>.
| Geometries from <Reference>.
| Reference interaction energies from <Reference>.
"""
if route == 3:
docstring += """
- **cp** ``'off'`` <erase this comment and after unless on is a valid option> || ``'on'``
- **rlxd** ``'off'`` <erase this comment and after unless on is valid option> || ``'on'``
"""
docstring += """
- **benchmark**
- ``'<benchmark_name>'`` <Reference>.
- |dl| ``'<default_benchmark_name>'`` |dr| <Reference>.
- **subset**
- ``'small'`` <members_description>
- ``'large'`` <members_description>
- ``'<subset>'`` <members_description>
\"\"\"
"""
spy += docstring
spy += 'import re\n'
spy += 'import qcdb\n'
spy += "\n# <<< %s Database Module >>>\n" % (dbse)
spy += "dbse = %s\n" % ("'" + dbse + "'")
if isOS == True:
spy += "isOS = '%s'\n" % (isOS)
spy += "\n# <<< Database Members >>>\n"
spy += "HRXN = ["
if route == 1:
for rgt in HRGT:
spy += "'%s', " % (rgt)
elif route == 2:
for rxn in HRXN:
spy += "'%s', " % (rxn)
elif route == 3:
for rgt in HRGT:
spy += "'%s', " % (rgt)
spy += "]\n"
spy += "HRXN_SM = []\n"
spy += "HRXN_LG = []\n"
spy += "\n# <<< Chemical Systems Involved >>>\n"
spy += "RXNM = {} # reaction matrix of reagent contributions per reaction\n"
spy += "ACTV = {} # order of active reagents per reaction\n"
if route == 1:
for rgt in HRGT:
spy += """ACTV['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """['%%s-%%s-reagent' %% (dbse, %s)]\n""" % ("'" + rgt + "'")
spy += """RXNM['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """dict(zip(ACTV['%%s-%%s' %% (dbse, %s)], [+1]))\n\n""" % ("'" + rgt + "'")
elif route == 2:
for rxn in HRXN:
spy += """ACTV['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + str(rxn) + "'")
spy += """['%%s-%%s-reagent' %% (dbse, %s),\n""" % ("''")
spy += """%62s '%%s-%%s-reagent' %% (dbse, %s),\n""" % ("", "''")
spy += """%62s '%%s-%%s-reagent' %% (dbse, %s) ]\n""" % ("", "''")
spy += """RXNM['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + str(rxn) + "'")
spy += """dict(zip(ACTV['%%s-%%s' %% (dbse, %s)], []))\n\n""" % ("'" + str(rxn) + "'")
elif route == 3:
pass
spy += "ACTV_CP = {} # order of active reagents per counterpoise-corrected reaction\n"
spy += "ACTV_SA = {} # order of active reagents for non-supermolecular calculations\n"
spy += "for rxn in HRXN:\n\n"
spy += " RXNM[ '%s-%s' % (dbse, rxn)] = {'%s-%s-dimer' % (dbse, rxn) : +1,\n"
spy += " '%s-%s-monoA-CP' % (dbse, rxn) : -1,\n"
spy += " '%s-%s-monoB-CP' % (dbse, rxn) : -1,\n"
spy += " '%s-%s-monoA-unCP' % (dbse, rxn) : -1,\n"
spy += " '%s-%s-monoB-unCP' % (dbse, rxn) : -1 }\n\n"
spy += " ACTV_SA['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn) ]\n\n"
spy += " ACTV_CP['%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn),\n"
spy += " '%s-%s-monoA-CP' % (dbse, rxn),\n"
spy += " '%s-%s-monoB-CP' % (dbse, rxn) ]\n\n"
spy += " ACTV[ '%s-%s' % (dbse, rxn)] = ['%s-%s-dimer' % (dbse, rxn),\n"
spy += " '%s-%s-monoA-unCP' % (dbse, rxn),\n"
spy += " '%s-%s-monoB-unCP' % (dbse, rxn) ]\n\n"
spy += "# <<< Reference Values [kcal/mol] >>>\n"
spy += "BIND = {}\n"
#print SPY_OUT "nan = float('NaN')\n";
if route == 1:
for rgt in HRGT:
spy += """BIND['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """%8.3f\n""" % (0.0) # TODO BINDRGT[rgt]))
elif route == 2:
for rxn in HRXN:
pass
spy += """BIND['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + str(rxn) + "'")
spy += """%8.3f\n""" % (0.0) # TODO BINDRGT[rxn]))
elif route == 3:
for rgt in HRGT:
pass
spy += """BIND['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """%8.3f\n""" % (0.0) # TODO BINDRGT[rgt]))
# write comment line section
spy += "\n# <<< Comment Lines >>>\n"
spy += "TAGL = {}\n"
if route == 1:
for rgt in HRGT:
spy += """TAGL['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % (TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-reagent' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % (TAGLRGT[rgt])
elif route == 2:
for rxn in HRXN:
spy += """TAGL['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + str(rxn) + "'")
spy += """\"\"\"%s \"\"\"\n""" % (TAGLRXN[rxn])
for rgt in HRGT:
spy += """TAGL['%%s-%%s-reagent' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % (TAGLRGT[rgt])
elif route == 3:
for rgt in HRGT:
spy += """TAGL['%%s-%%s' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % (TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-dimer' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % ('Dimer from ' + TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-monoA-CP' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % ('Monomer A from ' + TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-monoB-CP' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % ('Monomer B from ' + TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-monoA-unCP' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % ('Monomer A from ' + TAGLRGT[rgt])
spy += """TAGL['%%s-%%s-monoB-unCP' %% (dbse, %-23s )] = """ % ("'" + rgt + "'")
spy += """\"\"\"%s \"\"\"\n""" % ('Monomer B from ' + TAGLRGT[rgt])
# write subset geometry section
if route == 3:
gpy += "# <<< Derived Geometry Strings >>>\n"
gpy += "for rxn in HRXN:\n"
gpy += " GEOS['%s-%s-monoA-unCP' % (dbse, rxn)] = "
gpy += "GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1)\n"
gpy += " GEOS['%s-%s-monoB-unCP' % (dbse, rxn)] = "
gpy += "GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2)\n"
gpy += " GEOS['%s-%s-monoA-CP' % (dbse, rxn)] = "
gpy += "GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(1, 2)\n"
gpy += " GEOS['%s-%s-monoB-CP' % (dbse, rxn)] = "
gpy += "GEOS['%s-%s-dimer' % (dbse, rxn)].extract_fragments(2, 1)\n"
# arrange intermediate strings into final database file
fpy = open('%s.py' % (dbse), 'w')
fpy.write(spy)
fpy.write(gpy)
fpy.close()
# display customized advice for finishing off the database
final = """
** Congratulations, your database file %s.py has been constructed!
** To have a minimally functioning database, do the following:
""" % (dbse)
if line2 == 'comment' and isOS == True:
final += """
* If not all neutral singlets, fill in correct charge and
multiplicity for all reagents.
"""
if line2 == 'comment' and isOS == False:
final += """
* If not all neutral, fill in correct charge for all reagents.
"""
if route == 3 and line2 == 'cgmp':
final += """
* The charge and multiplicity read in from line2 of the xyz files
has been assigned to fragmentA, leaving fragmentB as a neutral
singlet. If this is incorrect for any reagents, reapportion the
charge and multiplicity correctly between fragments A & B.
"""
if route == 3 and line2 == 'comment':
final += """
* If dimer and both subsystems are not neutral singlets, fill in
correct charge and multiplicity for each subsystem.
"""
if route == 2:
final += """
* Define the reagents that contribute to reach reaction by filling
in the empty single quotes in ACTV. Add or delete lines as
necessary for each reaction if more or fewer than three reagents
contribute. See NHTBH.py as an example.
* Define the mathematical contribution of reagents to reactions
by filling in a number (most often +1 or -1) for each reagent to
the RXNM of each reaction. See NHTBH.py as an example.
"""
final += """
* Make sure the PSI4 driver can find your new database.
If running from an installed psi4, move %s.py into INSTALLED_DIRECTORY/share/psi/databases .
If running from source, move %s.py into PSIDATADIR/databases .
Alternatively, add the directory containing %s.py into PYTHONPATH .
""" % (dbse, dbse, dbse)
final += """
** To enhance the functionality/documentation of your database, do the following:
* Rearrange the order of reactions in HRXN, as this will define
the order for the database.
* Fill in the skeleton docstring at top of file, adding sources
for geometries and any reference data. This info will show up
in the online documentation.
* Fill in the comment lines of TAGL in plain text. These show up
as banners in job output files.
* Fill in reference values (in kcal/mol) into BIND.
* If multiple sets of reference values are available, define each
in an array BIND_ALTREF so that they can be called in a psi4
input file as benchmark='ALTREF'. Add the new reference to the
docstring. See S22.py as an example.
* Fill in the least computationally expensive 2-3 reactions into
HRXN_SM and the most expensive into HRXN_LG so that they can be
called in a psi4 input file as subset='small' or subset='large'.
* Define subsets of reactions such as in an array
SUBSETARRAY=['reaction', 'reaction'] so that they can be called
in a psi4 input file as subset='SUBSETARRAY'. Add the new subset
option to to the docstring. See NBC10.py for a simple example or
CFLOW.py for a complex example.
"""
print final
|