This file is indexed.

/usr/lib/python2.7/dist-packages/altgraph/GraphUtil.py is in python-altgraph 0.12~dfsg-3.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
'''
altgraph.GraphUtil - Utility classes and functions
==================================================
'''

import random
from collections import deque
from altgraph import Graph
from altgraph import GraphError

def generate_random_graph(node_num, edge_num, self_loops=False, multi_edges=False):
    '''
    Generates and returns a :py:class:`~altgraph.Graph.Graph` instance with *node_num* nodes
    randomly connected by *edge_num* edges.
    '''
    g = Graph.Graph()

    if not multi_edges:
        if self_loops:
            max_edges = node_num * node_num
        else:
            max_edges = node_num * (node_num-1)

        if edge_num > max_edges:
            raise GraphError("inconsistent arguments to 'generate_random_graph'")

    nodes = range(node_num)

    for node in nodes:
        g.add_node(node)

    while 1:
        head = random.choice(nodes)
        tail = random.choice(nodes)

        # loop defense
        if head == tail and not self_loops:
            continue

        # multiple edge defense
        if g.edge_by_node(head,tail) is not None and not multi_edges:
            continue

        # add the edge
        g.add_edge(head, tail)
        if g.number_of_edges() >= edge_num:
            break

    return g

def generate_scale_free_graph(steps, growth_num, self_loops=False, multi_edges=False):
    '''
    Generates and returns a :py:class:`~altgraph.Graph.Graph` instance that will have *steps* \* *growth_num* nodes
    and a scale free (powerlaw) connectivity. Starting with a fully connected graph with *growth_num* nodes
    at every step *growth_num* nodes are added to the graph and are connected to existing nodes with
    a probability proportional to the degree of these existing nodes.
    '''
    # FIXME: The code doesn't seem to do what the documentation claims.
    graph = Graph.Graph()

    # initialize the graph
    store = []
    for i in range(growth_num):
        #store   += [ i ] * (growth_num - 1)
        for j in range(i + 1, growth_num):
            store.append(i)
            store.append(j)
            graph.add_edge(i,j)

    # generate
    for node in range(growth_num, steps * growth_num):
        graph.add_node(node)
        while ( graph.out_degree(node) < growth_num ):
            nbr = random.choice(store)

            # loop defense
            if node == nbr and not self_loops:
                continue

            # multi edge defense
            if graph.edge_by_node(node, nbr) and not multi_edges:
                continue

            graph.add_edge(node, nbr)


        for nbr in graph.out_nbrs(node):
            store.append(node)
            store.append(nbr)

    return graph

def filter_stack(graph, head, filters):
    """
    Perform a walk in a depth-first order starting
    at *head*.

    Returns (visited, removes, orphans).

    * visited: the set of visited nodes
    * removes: the list of nodes where the node
      data does not all *filters*
    * orphans: tuples of (last_good, node),
      where node is not in removes, is directly
      reachable from a node in *removes* and
      *last_good* is the closest upstream node that is not
      in *removes*.
    """

    visited, removes, orphans = set([head]), set(), set()
    stack = deque([(head, head)])
    get_data = graph.node_data
    get_edges = graph.out_edges
    get_tail = graph.tail

    while stack:
        last_good, node = stack.pop()
        data = get_data(node)
        if data is not None:
            for filtfunc in filters:
                if not filtfunc(data):
                    removes.add(node)
                    break
            else:
                last_good = node
        for edge in get_edges(node):
            tail = get_tail(edge)
            if last_good is not node:
                orphans.add((last_good, tail))
            if tail not in visited:
                visited.add(tail)
                stack.append((last_good, tail))

    orphans = [(last_good, tail) for (last_good, tail) in orphans if tail not in removes]
    #orphans.sort()

    return visited, removes, orphans