/usr/lib/python2.7/dist-packages/astroML/fourier.py is in python-astroml 0.3-3.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 | import numpy as np
try:
# use scipy if available: it's faster
from scipy.fftpack import fft, ifft, fftshift, ifftshift
except:
from numpy.fft import fft, ifft, fftshift, ifftshift
def FT_continuous(t, h, axis=-1, method=1):
"""Approximate a continuous 1D Fourier Transform with sampled data.
This function uses the Fast Fourier Transform to approximate
the continuous fourier transform of a sampled function, using
the convention
.. math::
H(f) = \int h(t) exp(-2 \pi i f t) dt
It returns f and H, which approximate H(f).
Parameters
----------
t : array_like
regularly sampled array of times
t is assumed to be regularly spaced, i.e.
t = t0 + Dt * np.arange(N)
h : array_like
real or complex signal at each time
axis : int
axis along which to perform fourier transform.
This axis must be the same length as t.
Returns
-------
f : ndarray
frequencies of result. Units are the same as 1/t
H : ndarray
Fourier coefficients at each frequency.
"""
assert t.ndim == 1
assert h.shape[axis] == t.shape[0]
N = len(t)
if N % 2 != 0:
raise ValueError("number of samples must be even")
Dt = t[1] - t[0]
Df = 1. / (N * Dt)
t0 = t[N / 2]
f = Df * (np.arange(N) - N / 2)
shape = np.ones(h.ndim, dtype=int)
shape[axis] = N
phase = np.ones(N)
phase[1::2] = -1
phase = phase.reshape(shape)
if method == 1:
H = Dt * fft(h * phase, axis=axis)
else:
H = Dt * fftshift(fft(h, axis=axis), axes=axis)
H *= phase
H *= np.exp(-2j * np.pi * t0 * f.reshape(shape))
H *= np.exp(-1j * np.pi * N / 2)
return f, H
def IFT_continuous(f, H, axis=-1, method=1):
"""Approximate a continuous 1D Inverse Fourier Transform with sampled data.
This function uses the Fast Fourier Transform to approximate
the continuous fourier transform of a sampled function, using
the convention
.. math::
H(f) = integral[ h(t) exp(-2 pi i f t) dt]
h(t) = integral[ H(f) exp(2 pi i f t) dt]
It returns t and h, which approximate h(t).
Parameters
----------
f : array_like
regularly sampled array of times
t is assumed to be regularly spaced, i.e.
f = f0 + Df * np.arange(N)
H : array_like
real or complex signal at each time
axis : int
axis along which to perform fourier transform.
This axis must be the same length as t.
Returns
-------
f : ndarray
frequencies of result. Units are the same as 1/t
H : ndarray
Fourier coefficients at each frequency.
"""
assert f.ndim == 1
assert H.shape[axis] == f.shape[0]
N = len(f)
if N % 2 != 0:
raise ValueError("number of samples must be even")
f0 = f[0]
Df = f[1] - f[0]
t0 = -0.5 / Df
Dt = 1. / (N * Df)
t = t0 + Dt * np.arange(N)
shape = np.ones(H.ndim, dtype=int)
shape[axis] = N
t_calc = t.reshape(shape)
f_calc = f.reshape(shape)
H_prime = H * np.exp(2j * np.pi * t0 * f_calc)
h_prime = ifft(H_prime, axis=axis)
h = N * Df * np.exp(2j * np.pi * f0 * (t_calc - t0)) * h_prime
return t, h
def PSD_continuous(t, h, axis=-1, method=1):
"""Approximate a continuous 1D Power Spectral Density of sampled data.
This function uses the Fast Fourier Transform to approximate
the continuous fourier transform of a sampled function, using
the convention
.. math::
H(f) = \int h(t) \exp(-2 \pi i f t) dt
It returns f and PSD, which approximate PSD(f) where
.. math::
PSD(f) = |H(f)|^2 + |H(-f)|^2
Parameters
----------
t : array_like
regularly sampled array of times
t is assumed to be regularly spaced, i.e.
t = t0 + Dt * np.arange(N)
h : array_like
real or complex signal at each time
axis : int
axis along which to perform fourier transform.
This axis must be the same length as t.
Returns
-------
f : ndarray
frequencies of result. Units are the same as 1/t
PSD : ndarray
Fourier coefficients at each frequency.
"""
assert t.ndim == 1
assert h.shape[axis] == t.shape[0]
N = len(t)
if N % 2 != 0:
raise ValueError("number of samples must be even")
ax = axis % h.ndim
if method == 1:
# use FT_continuous
f, Hf = FT_continuous(t, h, axis)
Hf = np.rollaxis(Hf, ax)
f = -f[N / 2::-1]
PSD = abs(Hf[N / 2::-1]) ** 2
PSD[:-1] += abs(Hf[N / 2:]) ** 2
PSD = np.rollaxis(PSD, 0, ax + 1)
else:
# A faster way to do it is with fftshift
# take advantage of the fact that phases go away
Dt = t[1] - t[0]
Df = 1. / (N * Dt)
f = Df * np.arange(N / 2 + 1)
Hf = fft(h, axis=axis)
Hf = np.rollaxis(Hf, ax)
PSD = abs(Hf[:N / 2 + 1]) ** 2
PSD[-1] = 0
PSD[1:] += abs(Hf[N / 2:][::-1]) ** 2
PSD[0] *= 2
PSD = Dt ** 2 * np.rollaxis(PSD, 0, ax + 1)
return f, PSD
def sinegauss(t, t0, f0, Q):
"""Sine-gaussian wavelet"""
a = (f0 * 1. / Q) ** 2
return (np.exp(-a * (t - t0) ** 2)
* np.exp(2j * np.pi * f0 * (t - t0)))
def sinegauss_FT(f, t0, f0, Q):
"""Fourier transform of the sine-gaussian wavelet.
This uses the convention
.. math::
H(f) = integral[ h(t) exp(-2pi i f t) dt]
"""
a = (f0 * 1. / Q) ** 2
return (np.sqrt(np.pi / a)
* np.exp(-2j * np.pi * f * t0)
* np.exp(-np.pi ** 2 * (f - f0) ** 2 / a))
def sinegauss_PSD(f, t0, f0, Q):
"""Compute the PSD of the sine-gaussian function at frequency f
.. math::
PSD(f) = |H(f)|^2 + |H(-f)|^2
"""
a = (f0 * 1. / Q) ** 2
Pf = np.pi / a * np.exp(-2 * np.pi ** 2 * (f - f0) ** 2 / a)
Pmf = np.pi / a * np.exp(-2 * np.pi ** 2 * (-f - f0) ** 2 / a)
return Pf + Pmf
def wavelet_PSD(t, h, f0, Q=1.0):
"""Compute the wavelet PSD as a function of f0 and t
Parameters
----------
t : array_like
array of times, length N
h : array_like
array of observed values, length N
f0 : array_like
array of candidate frequencies, length Nf
Q : float
Q-parameter for wavelet
Returns
-------
PSD : ndarray
The 2-dimensional PSD, of shape (Nf, N), corresponding with
frequencies f0 and times t.
"""
t, h, f0 = map(np.asarray, (t, h, f0))
if (t.ndim != 1) or (t.shape != h.shape):
raise ValueError('t and h must be one dimensional and the same shape')
if f0.ndim != 1:
raise ValueError('f0 must be one dimensional')
Q = Q + np.zeros_like(f0)
f, H = FT_continuous(t, h)
W = np.conj(sinegauss_FT(f, 0, f0[:, None], Q[:, None]))
_, HW = IFT_continuous(f, H * W)
return abs(HW) ** 2
|