/usr/lib/python2.7/dist-packages/cobe/brain.py is in python-cobe 2.1.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 | # Copyright (C) 2013 Peter Teichman
import collections
import itertools
import logging
import math
import operator
import os
import random
import re
import sqlite3
import time
import types
from .instatrace import trace, trace_ms, trace_us
from . import scoring
from . import tokenizers
log = logging.getLogger("cobe")
class CobeError(Exception):
pass
class Brain:
"""The main interface for Cobe."""
# use an empty string to denote the start/end of a chain
END_TOKEN = ""
# use a magic token id for (single) whitespace, so space is never
# in the tokens table
SPACE_TOKEN_ID = -1
def __init__(self, filename):
"""Construct a brain for the specified filename. If that file
doesn't exist, it will be initialized with the default brain
settings."""
if not os.path.exists(filename):
log.info("File does not exist. Assuming defaults.")
Brain.init(filename)
with trace_us("Brain.connect_us"):
self.graph = graph = Graph(sqlite3.connect(filename))
version = graph.get_info_text("version")
if version != "2":
raise CobeError("cannot read a version %s brain" % version)
self.order = int(graph.get_info_text("order"))
self.scorer = scoring.ScorerGroup()
self.scorer.add_scorer(1.0, scoring.CobeScorer())
tokenizer_name = graph.get_info_text("tokenizer")
if tokenizer_name == "MegaHAL":
self.tokenizer = tokenizers.MegaHALTokenizer()
else:
self.tokenizer = tokenizers.CobeTokenizer()
self.stemmer = None
stemmer_name = graph.get_info_text("stemmer")
if stemmer_name is not None:
try:
self.stemmer = tokenizers.CobeStemmer(stemmer_name)
log.debug("Initialized a stemmer: %s" % stemmer_name)
except Exception, e:
log.error("Error creating stemmer: %s", str(e))
self._end_token_id = \
graph.get_token_by_text(self.END_TOKEN, create=True)
self._end_context = [self._end_token_id] * self.order
self._end_context_id = graph.get_node_by_tokens(self._end_context)
self._learning = False
def start_batch_learning(self):
"""Begin a series of batch learn operations. Data will not be
committed to the database until stop_batch_learning is
called. Learn text using the normal learn(text) method."""
self._learning = True
self.graph.cursor().execute("PRAGMA journal_mode=memory")
self.graph.drop_reply_indexes()
def stop_batch_learning(self):
"""Finish a series of batch learn operations."""
self._learning = False
self.graph.commit()
self.graph.cursor().execute("PRAGMA journal_mode=truncate")
self.graph.ensure_indexes()
def del_stemmer(self):
self.stemmer = None
self.graph.delete_token_stems()
self.graph.set_info_text("stemmer", None)
self.graph.commit()
def set_stemmer(self, language):
self.stemmer = tokenizers.CobeStemmer(language)
self.graph.delete_token_stems()
self.graph.update_token_stems(self.stemmer)
self.graph.set_info_text("stemmer", language)
self.graph.commit()
def learn(self, text):
"""Learn a string of text. If the input is not already
Unicode, it will be decoded as utf-8."""
if type(text) != types.UnicodeType:
# Assume that non-Unicode text is encoded as utf-8, which
# should be somewhat safe in the modern world.
text = text.decode("utf-8", "ignore")
tokens = self.tokenizer.split(text)
trace("Brain.learn_input_token_count", len(tokens))
self._learn_tokens(tokens)
def _to_edges(self, tokens):
"""This is an iterator that returns the nodes of our graph:
"This is a test" -> "None This" "This is" "is a" "a test" "test None"
Each is annotated with a boolean that tracks whether whitespace was
found between the two tokens."""
# prepend self.order Nones
chain = self._end_context + tokens + self._end_context
has_space = False
context = []
for i in xrange(len(chain)):
context.append(chain[i])
if len(context) == self.order:
if chain[i] == self.SPACE_TOKEN_ID:
context.pop()
has_space = True
continue
yield tuple(context), has_space
context.pop(0)
has_space = False
def _to_graph(self, contexts):
"""This is an iterator that returns each edge of our graph
with its two nodes"""
prev = None
for context in contexts:
if prev is None:
prev = context
continue
yield prev[0], context[1], context[0]
prev = context
def _learn_tokens(self, tokens):
token_count = len([token for token in tokens if token != " "])
if token_count < 3:
return
# create each of the non-whitespace tokens
token_ids = []
for text in tokens:
if text == " ":
token_ids.append(self.SPACE_TOKEN_ID)
continue
token_id = self.graph.get_token_by_text(text, create=True,
stemmer=self.stemmer)
token_ids.append(token_id)
edges = list(self._to_edges(token_ids))
prev_id = None
for prev, has_space, next in self._to_graph(edges):
if prev_id is None:
prev_id = self.graph.get_node_by_tokens(prev)
next_id = self.graph.get_node_by_tokens(next)
self.graph.add_edge(prev_id, next_id, has_space)
prev_id = next_id
if not self._learning:
self.graph.commit()
def reply(self, text, loop_ms=500, max_len=None):
"""Reply to a string of text. If the input is not already
Unicode, it will be decoded as utf-8."""
if type(text) != types.UnicodeType:
# Assume that non-Unicode text is encoded as utf-8, which
# should be somewhat safe in the modern world.
text = text.decode("utf-8", "ignore")
tokens = self.tokenizer.split(text)
input_ids = map(self.graph.get_token_by_text, tokens)
# filter out unknown words and non-words from the potential pivots
pivot_set = self._filter_pivots(input_ids)
# Conflate the known ids with the stems of their words
if self.stemmer is not None:
self._conflate_stems(pivot_set, tokens)
# If we didn't recognize any word tokens in the input, pick
# something random from the database and babble.
if len(pivot_set) == 0:
pivot_set = self._babble()
score_cache = {}
best_score = -1.0
best_reply = None
# Loop for approximately loop_ms milliseconds. This can either
# take more (if the first reply takes a long time to generate)
# or less (if the _generate_replies search ends early) time,
# but it should stay roughly accurate.
start = time.time()
end = start + loop_ms * 0.001
count = 0
all_replies = []
_start = time.time()
for edges, pivot_node in self._generate_replies(pivot_set):
reply = Reply(self.graph, tokens, input_ids, pivot_node, edges)
if max_len and self._too_long(max_len, reply):
continue
key = reply.edge_ids
if key not in score_cache:
with trace_us("Brain.evaluate_reply_us"):
score = self.scorer.score(reply)
score_cache[key] = score
else:
# skip scoring, we've already seen this reply
score = -1
if score > best_score:
best_reply = reply
best_score = score
# dump all replies to the console if debugging is enabled
if log.isEnabledFor(logging.DEBUG):
all_replies.append((score, reply))
count += 1
if time.time() > end:
break
if best_reply is None:
# we couldn't find any pivot words in _babble(), so we're
# working with an essentially empty brain. Use the classic
# MegaHAL reply:
return "I don't know enough to answer you yet!"
_time = time.time() - _start
if best_reply is None:
# we couldn't find any pivot words in _babble(), so we're
# working with an essentially empty brain. Use the classic
# MegaHAL reply:
return "I don't know enough to answer you yet!"
self.scorer.end(best_reply)
if log.isEnabledFor(logging.DEBUG):
replies = [(score, reply.to_text())
for score, reply in all_replies]
replies.sort()
for score, text in replies:
log.debug("%f %s", score, text)
trace("Brain.reply_input_token_count", len(tokens))
trace("Brain.known_word_token_count", len(pivot_set))
trace("Brain.reply_us", _time)
trace("Brain.reply_count", count, _time)
trace("Brain.best_reply_score", int(best_score * 1000))
trace("Brain.best_reply_length", len(best_reply.edge_ids))
log.debug("made %d replies (%d unique) in %f seconds"
% (count, len(score_cache), _time))
if len(text) > 60:
msg = text[0:60] + "..."
else:
msg = text
log.info("[%s] %d %f", msg, count, best_score)
# look up the words for these tokens
with trace_us("Brain.reply_words_lookup_us"):
text = best_reply.to_text()
return text
def _too_long(self, max_len, reply):
text = reply.to_text()
if len(text) > max_len:
log.debug("over max_len [%d]: %s", len(text), text)
return True
def _conflate_stems(self, pivot_set, tokens):
for token in tokens:
stem_ids = self.graph.get_token_stem_id(self.stemmer.stem(token))
if not stem_ids:
continue
# add the tuple of stems to the pivot set, and then
# remove the individual token_ids
pivot_set.add(tuple(stem_ids))
pivot_set.difference_update(stem_ids)
def _babble(self):
token_ids = []
for i in xrange(5):
# Generate a few random tokens that can be used as pivots
token_id = self.graph.get_random_token()
if token_id is not None:
token_ids.append(token_id)
return set(token_ids)
def _filter_pivots(self, pivots):
# remove pivots that might not give good results
tokens = set(filter(None, pivots))
filtered = self.graph.get_word_tokens(tokens)
if not filtered:
filtered = self.graph.get_tokens(tokens) or []
return set(filtered)
def _pick_pivot(self, pivot_ids):
pivot = random.choice(tuple(pivot_ids))
if type(pivot) is types.TupleType:
# the input word was stemmed to several things
pivot = random.choice(pivot)
return pivot
def _generate_replies(self, pivot_ids):
if not pivot_ids:
return
end = self._end_context_id
graph = self.graph
search = graph.search_random_walk
# Cache all the trailing and beginning sentences we find from
# each random node we search. Since the node is a full n-tuple
# context, we can combine any pair of next_cache[node] and
# prev_cache[node] and get a new reply.
next_cache = collections.defaultdict(set)
prev_cache = collections.defaultdict(set)
while pivot_ids:
# generate a reply containing one of token_ids
pivot_id = self._pick_pivot(pivot_ids)
node = graph.get_random_node_with_token(pivot_id)
parts = itertools.izip_longest(search(node, end, 1),
search(node, end, 0),
fillvalue=None)
for next, prev in parts:
if next:
next_cache[node].add(next)
for p in prev_cache[node]:
yield p + next, node
if prev:
prev = tuple(reversed(prev))
prev_cache[node].add(prev)
for n in next_cache[node]:
yield prev + n, node
@staticmethod
def init(filename, order=3, tokenizer=None):
"""Initialize a brain. This brain's file must not already exist.
Keyword arguments:
order -- Order of the forward/reverse Markov chains (integer)
tokenizer -- One of Cobe, MegaHAL (default Cobe). See documentation
for cobe.tokenizers for details. (string)"""
log.info("Initializing a cobe brain: %s" % filename)
if tokenizer is None:
tokenizer = "Cobe"
if tokenizer not in ("Cobe", "MegaHAL"):
log.info("Unknown tokenizer: %s. Using CobeTokenizer", tokenizer)
tokenizer = "Cobe"
graph = Graph(sqlite3.connect(filename))
with trace_us("Brain.init_time_us"):
graph.init(order, tokenizer)
class Reply:
"""Provide useful support for scoring functions"""
def __init__(self, graph, tokens, token_ids, pivot_node, edge_ids):
self.graph = graph
self.tokens = tokens
self.token_ids = token_ids
self.pivot_node = pivot_node
self.edge_ids = edge_ids
self.text = None
def to_text(self):
if self.text is None:
parts = []
for word, has_space in map(self.graph.get_text_by_edge,
self.edge_ids):
parts.append(word)
if has_space:
parts.append(" ")
self.text = "".join(parts)
return self.text
class Graph:
"""A special-purpose graph class, stored in a sqlite3 database"""
def __init__(self, conn, run_migrations=True):
self._conn = conn
conn.row_factory = sqlite3.Row
if self.is_initted():
if run_migrations:
self._run_migrations()
self.order = int(self.get_info_text("order"))
self._all_tokens = ",".join(["token%d_id" % i
for i in xrange(self.order)])
self._all_tokens_args = " AND ".join(
["token%d_id = ?" % i for i in xrange(self.order)])
self._all_tokens_q = ",".join(["?" for i in xrange(self.order)])
self._last_token = "token%d_id" % (self.order - 1)
# Disable the SQLite cache. Its pages tend to get swapped
# out, even if the database file is in buffer cache.
c = self.cursor()
c.execute("PRAGMA cache_size=0")
c.execute("PRAGMA page_size=4096")
# Each of these speed-for-reliability tradeoffs is useful for
# bulk learning.
c.execute("PRAGMA journal_mode=truncate")
c.execute("PRAGMA temp_store=memory")
c.execute("PRAGMA synchronous=OFF")
def cursor(self):
return self._conn.cursor()
def commit(self):
with trace_us("Brain.db_commit_us"):
self._conn.commit()
def close(self):
return self._conn.close()
def is_initted(self):
try:
self.get_info_text("order")
return True
except sqlite3.OperationalError:
return False
def set_info_text(self, attribute, text):
c = self.cursor()
if text is None:
q = "DELETE FROM info WHERE attribute = ?"
c.execute(q, (attribute,))
else:
q = "UPDATE info SET text = ? WHERE attribute = ?"
c.execute(q, (text, attribute))
if c.rowcount == 0:
q = "INSERT INTO info (attribute, text) VALUES (?, ?)"
c.execute(q, (attribute, text))
def get_info_text(self, attribute, default=None, text_factory=None):
c = self.cursor()
if text_factory is not None:
old_text_factory = self._conn.text_factory
self._conn.text_factory = text_factory
q = "SELECT text FROM info WHERE attribute = ?"
row = c.execute(q, (attribute,)).fetchone()
if text_factory is not None:
self._conn.text_factory = old_text_factory
if row:
return row[0]
return default
def get_seq_expr(self, seq):
# Format the sequence seq as (item1, item2, item2) as appropriate
# for an IN () clause in SQL
if len(seq) == 1:
# Grab the first item from seq. Use an iterator so this works
# with sets as well as lists.
return "(%s)" % iter(seq).next()
return str(tuple(seq))
def get_token_by_text(self, text, create=False, stemmer=None):
c = self.cursor()
q = "SELECT id FROM tokens WHERE text = ?"
row = c.execute(q, (text,)).fetchone()
if row:
return row[0]
elif create:
q = "INSERT INTO tokens (text, is_word) VALUES (?, ?)"
is_word = bool(re.search("\w", text, re.UNICODE))
c.execute(q, (text, is_word))
token_id = c.lastrowid
if stemmer is not None:
stem = stemmer.stem(text)
if stem is not None:
self.insert_stem(token_id, stem)
return token_id
def insert_stem(self, token_id, stem):
q = "INSERT INTO token_stems (token_id, stem) VALUES (?, ?)"
self._conn.execute(q, (token_id, stem))
def get_token_stem_id(self, stem):
q = "SELECT token_id FROM token_stems WHERE token_stems.stem = ?"
rows = self._conn.execute(q, (stem,))
if rows:
return map(operator.itemgetter(0), rows)
def get_word_tokens(self, token_ids):
q = "SELECT id FROM tokens WHERE id IN %s AND is_word = 1" % \
self.get_seq_expr(token_ids)
rows = self._conn.execute(q)
if rows:
return map(operator.itemgetter(0), rows)
def get_tokens(self, token_ids):
q = "SELECT id FROM tokens WHERE id IN %s" % \
self.get_seq_expr(token_ids)
rows = self._conn.execute(q)
if rows:
return map(operator.itemgetter(0), rows)
def get_node_by_tokens(self, tokens):
c = self.cursor()
q = "SELECT id FROM nodes WHERE %s" % self._all_tokens_args
row = c.execute(q, tokens).fetchone()
if row:
return int(row[0])
# if not found, create the node
q = "INSERT INTO nodes (count, %s) " \
"VALUES (0, %s)" % (self._all_tokens, self._all_tokens_q)
c.execute(q, tokens)
return c.lastrowid
def get_text_by_edge(self, edge_id):
q = "SELECT tokens.text, edges.has_space FROM nodes, edges, tokens " \
"WHERE edges.id = ? AND edges.prev_node = nodes.id " \
"AND nodes.%s = tokens.id" % self._last_token
return self._conn.execute(q, (edge_id,)).fetchone()
def get_random_token(self):
# token 1 is the end_token_id, so we want to generate a random token
# id from 2..max(id) inclusive.
q = "SELECT (abs(random()) % (MAX(id)-1)) + 2 FROM tokens"
row = self._conn.execute(q).fetchone()
if row:
return row[0]
def get_random_node_with_token(self, token_id):
c = self.cursor()
q = "SELECT id FROM nodes WHERE token0_id = ? " \
"LIMIT 1 OFFSET abs(random())%(SELECT count(*) FROM nodes " \
" WHERE token0_id = ?)"
row = c.execute(q, (token_id, token_id)).fetchone()
if row:
return int(row[0])
def get_edge_logprob(self, edge_id):
# Each edge goes from an n-gram node (word1, word2, word3) to
# another (word2, word3, word4). Calculate the probability:
# P(word4|word1,word2,word3) = count(edge_id) / count(prev_node_id)
c = self.cursor()
q = "SELECT edges.count, nodes.count FROM edges, nodes " \
"WHERE edges.id = ? AND edges.prev_node = nodes.id"
edge_count, node_count = c.execute(q, (edge_id,)).fetchone()
return math.log(edge_count, 2) - math.log(node_count, 2)
def has_space(self, edge_id):
c = self.cursor()
q = "SELECT has_space FROM edges WHERE id = ?"
row = c.execute(q, (edge_id,)).fetchone()
if row:
return bool(row[0])
def add_edge(self, prev_node, next_node, has_space):
c = self.cursor()
assert type(has_space) == types.BooleanType
update_q = "UPDATE edges SET count = count + 1 " \
"WHERE prev_node = ? AND next_node = ? AND has_space = ?"
q = "INSERT INTO edges (prev_node, next_node, has_space, count) " \
"VALUES (?, ?, ?, 1)"
args = (prev_node, next_node, has_space)
c.execute(update_q, args)
if c.rowcount == 0:
c.execute(q, args)
# The count on the next_node in the nodes table must be
# incremented here, to register that the node has been seen an
# additional time. This is now handled by database triggers.
def search_bfs(self, start_id, end_id, direction):
if direction:
q = "SELECT id, next_node FROM edges WHERE prev_node = ?"
else:
q = "SELECT id, prev_node FROM edges WHERE next_node = ?"
c = self.cursor()
left = collections.deque([(start_id, tuple())])
while left:
cur, path = left.popleft()
rows = c.execute(q, (cur,))
for rowid, next in rows:
newpath = path + (rowid,)
if next == end_id:
yield newpath
else:
left.append((next, newpath))
def search_random_walk(self, start_id, end_id, direction):
"""Walk once randomly from start_id to end_id."""
if direction:
q = "SELECT id, next_node " \
"FROM edges WHERE prev_node = :last " \
"LIMIT 1 OFFSET abs(random())%(SELECT count(*) from edges " \
" WHERE prev_node = :last)"
else:
q = "SELECT id, prev_node " \
"FROM edges WHERE next_node = :last " \
"LIMIT 1 OFFSET abs(random())%(SELECT count(*) from edges " \
" WHERE next_node = :last)"
c = self.cursor()
left = collections.deque([(start_id, tuple())])
while left:
cur, path = left.popleft()
rows = c.execute(q, dict(last=cur))
# Note: the LIMIT 1 above means this list only contains
# one row. Using a list here so this matches the bfs()
# code, so the two functions can be more easily combined
# later.
for rowid, next in rows:
newpath = path + (rowid,)
if next == end_id:
yield newpath
else:
left.append((next, newpath))
def init(self, order, tokenizer, run_migrations=True):
c = self.cursor()
log.debug("Creating table: info")
c.execute("""
CREATE TABLE info (
attribute TEXT NOT NULL PRIMARY KEY,
text TEXT NOT NULL)""")
log.debug("Creating table: tokens")
c.execute("""
CREATE TABLE tokens (
id INTEGER PRIMARY KEY AUTOINCREMENT,
text TEXT UNIQUE NOT NULL,
is_word INTEGER NOT NULL)""")
tokens = []
for i in xrange(order):
tokens.append("token%d_id INTEGER REFERENCES token(id)" % i)
log.debug("Creating table: token_stems")
c.execute("""
CREATE TABLE token_stems (
token_id INTEGER,
stem TEXT NOT NULL)""")
log.debug("Creating table: nodes")
c.execute("""
CREATE TABLE nodes (
id INTEGER PRIMARY KEY AUTOINCREMENT,
count INTEGER NOT NULL,
%s)""" % ',\n '.join(tokens))
log.debug("Creating table: edges")
c.execute("""
CREATE TABLE edges (
id INTEGER PRIMARY KEY AUTOINCREMENT,
prev_node INTEGER NOT NULL REFERENCES nodes(id),
next_node INTEGER NOT NULL REFERENCES nodes(id),
count INTEGER NOT NULL,
has_space INTEGER NOT NULL)""")
if run_migrations:
self._run_migrations()
# save the order of this brain
self.set_info_text("order", str(order))
self.order = order
# save the tokenizer
self.set_info_text("tokenizer", tokenizer)
# save the brain/schema version
self.set_info_text("version", "2")
self.commit()
self.ensure_indexes()
self.close()
def drop_reply_indexes(self):
self._conn.execute("DROP INDEX IF EXISTS edges_all_next")
self._conn.execute("DROP INDEX IF EXISTS edges_all_prev")
self._conn.execute("""
CREATE INDEX IF NOT EXISTS learn_index ON edges
(prev_node, next_node)""")
def ensure_indexes(self):
c = self.cursor()
# remove the temporary learning index if it exists
c.execute("DROP INDEX IF EXISTS learn_index")
token_ids = ",".join(["token%d_id" % i for i in xrange(self.order)])
c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS nodes_token_ids on nodes
(%s)""" % token_ids)
c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS edges_all_next ON edges
(next_node, prev_node, has_space, count)""")
c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS edges_all_prev ON edges
(prev_node, next_node, has_space, count)""")
def delete_token_stems(self):
c = self.cursor()
# drop the two stem indexes
c.execute("DROP INDEX IF EXISTS token_stems_stem")
c.execute("DROP INDEX IF EXISTS token_stems_id")
# delete all the existing stems from the table
c.execute("DELETE FROM token_stems")
self.commit()
def update_token_stems(self, stemmer):
# stemmer is a CobeStemmer
with trace_ms("Db.update_token_stems_ms"):
c = self.cursor()
insert_c = self.cursor()
insert_q = "INSERT INTO token_stems (token_id, stem) VALUES (?, ?)"
q = c.execute("""
SELECT id, text FROM tokens""")
for row in q:
stem = stemmer.stem(row[1])
if stem is not None:
insert_c.execute(insert_q, (row[0], stem))
self.commit()
with trace_ms("Db.index_token_stems_ms"):
c.execute("""
CREATE INDEX token_stems_id on token_stems (token_id)""")
c.execute("""
CREATE INDEX token_stems_stem on token_stems (stem)""")
def _run_migrations(self):
with trace_us("Db.run_migrations_us"):
self._maybe_drop_tokens_text_index()
self._maybe_create_node_count_triggers()
def _maybe_drop_tokens_text_index(self):
# tokens_text was an index on tokens.text, deemed redundant since
# tokens.text is declared UNIQUE, and sqlite automatically creates
# indexes for UNIQUE columns
self._conn.execute("DROP INDEX IF EXISTS tokens_text")
def _maybe_create_node_count_triggers(self):
# Create triggers on the edges table to update nodes counts.
# In previous versions, the node counts were updated with a
# separate query. Moving them into triggers improves
# performance.
c = self.cursor()
c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_insert_trigger AFTER INSERT ON edges
BEGIN UPDATE nodes SET count = count + NEW.count
WHERE nodes.id = NEW.next_node; END;""")
c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_update_trigger AFTER UPDATE ON edges
BEGIN UPDATE nodes SET count = count + (NEW.count - OLD.count)
WHERE nodes.id = NEW.next_node; END;""")
c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_delete_trigger AFTER DELETE ON edges
BEGIN UPDATE nodes SET count = count - old.count
WHERE nodes.id = OLD.next_node; END;""")
|