This file is indexed.

/usr/lib/python2.7/dist-packages/cobe/brain.py is in python-cobe 2.1.2-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
# Copyright (C) 2013 Peter Teichman

import collections
import itertools
import logging
import math
import operator
import os
import random
import re
import sqlite3
import time
import types

from .instatrace import trace, trace_ms, trace_us
from . import scoring
from . import tokenizers

log = logging.getLogger("cobe")


class CobeError(Exception):
    pass


class Brain:
    """The main interface for Cobe."""

    # use an empty string to denote the start/end of a chain
    END_TOKEN = ""

    # use a magic token id for (single) whitespace, so space is never
    # in the tokens table
    SPACE_TOKEN_ID = -1

    def __init__(self, filename):
        """Construct a brain for the specified filename. If that file
        doesn't exist, it will be initialized with the default brain
        settings."""
        if not os.path.exists(filename):
            log.info("File does not exist. Assuming defaults.")
            Brain.init(filename)

        with trace_us("Brain.connect_us"):
            self.graph = graph = Graph(sqlite3.connect(filename))

        version = graph.get_info_text("version")
        if version != "2":
            raise CobeError("cannot read a version %s brain" % version)

        self.order = int(graph.get_info_text("order"))

        self.scorer = scoring.ScorerGroup()
        self.scorer.add_scorer(1.0, scoring.CobeScorer())

        tokenizer_name = graph.get_info_text("tokenizer")
        if tokenizer_name == "MegaHAL":
            self.tokenizer = tokenizers.MegaHALTokenizer()
        else:
            self.tokenizer = tokenizers.CobeTokenizer()

        self.stemmer = None
        stemmer_name = graph.get_info_text("stemmer")

        if stemmer_name is not None:
            try:
                self.stemmer = tokenizers.CobeStemmer(stemmer_name)
                log.debug("Initialized a stemmer: %s" % stemmer_name)
            except Exception, e:
                log.error("Error creating stemmer: %s", str(e))

        self._end_token_id = \
            graph.get_token_by_text(self.END_TOKEN, create=True)

        self._end_context = [self._end_token_id] * self.order
        self._end_context_id = graph.get_node_by_tokens(self._end_context)

        self._learning = False

    def start_batch_learning(self):
        """Begin a series of batch learn operations. Data will not be
        committed to the database until stop_batch_learning is
        called. Learn text using the normal learn(text) method."""
        self._learning = True

        self.graph.cursor().execute("PRAGMA journal_mode=memory")
        self.graph.drop_reply_indexes()

    def stop_batch_learning(self):
        """Finish a series of batch learn operations."""
        self._learning = False

        self.graph.commit()
        self.graph.cursor().execute("PRAGMA journal_mode=truncate")
        self.graph.ensure_indexes()

    def del_stemmer(self):
        self.stemmer = None

        self.graph.delete_token_stems()

        self.graph.set_info_text("stemmer", None)
        self.graph.commit()

    def set_stemmer(self, language):
        self.stemmer = tokenizers.CobeStemmer(language)

        self.graph.delete_token_stems()
        self.graph.update_token_stems(self.stemmer)

        self.graph.set_info_text("stemmer", language)
        self.graph.commit()

    def learn(self, text):
        """Learn a string of text. If the input is not already
        Unicode, it will be decoded as utf-8."""
        if type(text) != types.UnicodeType:
            # Assume that non-Unicode text is encoded as utf-8, which
            # should be somewhat safe in the modern world.
            text = text.decode("utf-8", "ignore")

        tokens = self.tokenizer.split(text)
        trace("Brain.learn_input_token_count", len(tokens))

        self._learn_tokens(tokens)

    def _to_edges(self, tokens):
        """This is an iterator that returns the nodes of our graph:
"This is a test" -> "None This" "This is" "is a" "a test" "test None"

Each is annotated with a boolean that tracks whether whitespace was
found between the two tokens."""
        # prepend self.order Nones
        chain = self._end_context + tokens + self._end_context

        has_space = False

        context = []

        for i in xrange(len(chain)):
            context.append(chain[i])

            if len(context) == self.order:
                if chain[i] == self.SPACE_TOKEN_ID:
                    context.pop()
                    has_space = True
                    continue

                yield tuple(context), has_space

                context.pop(0)
                has_space = False

    def _to_graph(self, contexts):
        """This is an iterator that returns each edge of our graph
with its two nodes"""
        prev = None

        for context in contexts:
            if prev is None:
                prev = context
                continue

            yield prev[0], context[1], context[0]
            prev = context

    def _learn_tokens(self, tokens):
        token_count = len([token for token in tokens if token != " "])
        if token_count < 3:
            return

        # create each of the non-whitespace tokens
        token_ids = []
        for text in tokens:
            if text == " ":
                token_ids.append(self.SPACE_TOKEN_ID)
                continue

            token_id = self.graph.get_token_by_text(text, create=True,
                                                    stemmer=self.stemmer)
            token_ids.append(token_id)

        edges = list(self._to_edges(token_ids))

        prev_id = None
        for prev, has_space, next in self._to_graph(edges):
            if prev_id is None:
                prev_id = self.graph.get_node_by_tokens(prev)
            next_id = self.graph.get_node_by_tokens(next)

            self.graph.add_edge(prev_id, next_id, has_space)
            prev_id = next_id

        if not self._learning:
            self.graph.commit()

    def reply(self, text, loop_ms=500, max_len=None):
        """Reply to a string of text. If the input is not already
        Unicode, it will be decoded as utf-8."""
        if type(text) != types.UnicodeType:
            # Assume that non-Unicode text is encoded as utf-8, which
            # should be somewhat safe in the modern world.
            text = text.decode("utf-8", "ignore")

        tokens = self.tokenizer.split(text)
        input_ids = map(self.graph.get_token_by_text, tokens)

        # filter out unknown words and non-words from the potential pivots
        pivot_set = self._filter_pivots(input_ids)

        # Conflate the known ids with the stems of their words
        if self.stemmer is not None:
            self._conflate_stems(pivot_set, tokens)

        # If we didn't recognize any word tokens in the input, pick
        # something random from the database and babble.
        if len(pivot_set) == 0:
            pivot_set = self._babble()

        score_cache = {}

        best_score = -1.0
        best_reply = None

        # Loop for approximately loop_ms milliseconds. This can either
        # take more (if the first reply takes a long time to generate)
        # or less (if the _generate_replies search ends early) time,
        # but it should stay roughly accurate.
        start = time.time()
        end = start + loop_ms * 0.001
        count = 0

        all_replies = []

        _start = time.time()
        for edges, pivot_node in self._generate_replies(pivot_set):
            reply = Reply(self.graph, tokens, input_ids, pivot_node, edges)

            if max_len and self._too_long(max_len, reply):
                continue

            key = reply.edge_ids
            if key not in score_cache:
                with trace_us("Brain.evaluate_reply_us"):
                    score = self.scorer.score(reply)
                    score_cache[key] = score
            else:
                # skip scoring, we've already seen this reply
                score = -1

            if score > best_score:
                best_reply = reply
                best_score = score

            # dump all replies to the console if debugging is enabled
            if log.isEnabledFor(logging.DEBUG):
                all_replies.append((score, reply))

            count += 1
            if time.time() > end:
                break

        if best_reply is None:
            # we couldn't find any pivot words in _babble(), so we're
            # working with an essentially empty brain. Use the classic
            # MegaHAL reply:
            return "I don't know enough to answer you yet!"

        _time = time.time() - _start

        if best_reply is None:
            # we couldn't find any pivot words in _babble(), so we're
            # working with an essentially empty brain. Use the classic
            # MegaHAL reply:
            return "I don't know enough to answer you yet!"

        self.scorer.end(best_reply)

        if log.isEnabledFor(logging.DEBUG):
            replies = [(score, reply.to_text())
                       for score, reply in all_replies]
            replies.sort()

            for score, text in replies:
                log.debug("%f %s", score, text)

        trace("Brain.reply_input_token_count", len(tokens))
        trace("Brain.known_word_token_count", len(pivot_set))

        trace("Brain.reply_us", _time)
        trace("Brain.reply_count", count, _time)
        trace("Brain.best_reply_score", int(best_score * 1000))
        trace("Brain.best_reply_length", len(best_reply.edge_ids))

        log.debug("made %d replies (%d unique) in %f seconds"
                  % (count, len(score_cache), _time))

        if len(text) > 60:
            msg = text[0:60] + "..."
        else:
            msg = text

        log.info("[%s] %d %f", msg, count, best_score)

        # look up the words for these tokens
        with trace_us("Brain.reply_words_lookup_us"):
            text = best_reply.to_text()

        return text

    def _too_long(self, max_len, reply):
        text = reply.to_text()
        if len(text) > max_len:
            log.debug("over max_len [%d]: %s", len(text), text)
            return True

    def _conflate_stems(self, pivot_set, tokens):
        for token in tokens:
            stem_ids = self.graph.get_token_stem_id(self.stemmer.stem(token))
            if not stem_ids:
                continue

            # add the tuple of stems to the pivot set, and then
            # remove the individual token_ids
            pivot_set.add(tuple(stem_ids))
            pivot_set.difference_update(stem_ids)

    def _babble(self):
        token_ids = []
        for i in xrange(5):
            # Generate a few random tokens that can be used as pivots
            token_id = self.graph.get_random_token()

            if token_id is not None:
                token_ids.append(token_id)

        return set(token_ids)

    def _filter_pivots(self, pivots):
        # remove pivots that might not give good results
        tokens = set(filter(None, pivots))

        filtered = self.graph.get_word_tokens(tokens)
        if not filtered:
            filtered = self.graph.get_tokens(tokens) or []

        return set(filtered)

    def _pick_pivot(self, pivot_ids):
        pivot = random.choice(tuple(pivot_ids))

        if type(pivot) is types.TupleType:
            # the input word was stemmed to several things
            pivot = random.choice(pivot)

        return pivot

    def _generate_replies(self, pivot_ids):
        if not pivot_ids:
            return

        end = self._end_context_id
        graph = self.graph
        search = graph.search_random_walk

        # Cache all the trailing and beginning sentences we find from
        # each random node we search. Since the node is a full n-tuple
        # context, we can combine any pair of next_cache[node] and
        # prev_cache[node] and get a new reply.
        next_cache = collections.defaultdict(set)
        prev_cache = collections.defaultdict(set)

        while pivot_ids:
            # generate a reply containing one of token_ids
            pivot_id = self._pick_pivot(pivot_ids)
            node = graph.get_random_node_with_token(pivot_id)

            parts = itertools.izip_longest(search(node, end, 1),
                                           search(node, end, 0),
                                           fillvalue=None)

            for next, prev in parts:
                if next:
                    next_cache[node].add(next)
                    for p in prev_cache[node]:
                        yield p + next, node

                if prev:
                    prev = tuple(reversed(prev))
                    prev_cache[node].add(prev)
                    for n in next_cache[node]:
                        yield prev + n, node

    @staticmethod
    def init(filename, order=3, tokenizer=None):
        """Initialize a brain. This brain's file must not already exist.

Keyword arguments:
order -- Order of the forward/reverse Markov chains (integer)
tokenizer -- One of Cobe, MegaHAL (default Cobe). See documentation
             for cobe.tokenizers for details. (string)"""
        log.info("Initializing a cobe brain: %s" % filename)

        if tokenizer is None:
            tokenizer = "Cobe"

        if tokenizer not in ("Cobe", "MegaHAL"):
            log.info("Unknown tokenizer: %s. Using CobeTokenizer", tokenizer)
            tokenizer = "Cobe"

        graph = Graph(sqlite3.connect(filename))

        with trace_us("Brain.init_time_us"):
            graph.init(order, tokenizer)


class Reply:
    """Provide useful support for scoring functions"""
    def __init__(self, graph, tokens, token_ids, pivot_node, edge_ids):
        self.graph = graph
        self.tokens = tokens
        self.token_ids = token_ids
        self.pivot_node = pivot_node
        self.edge_ids = edge_ids
        self.text = None

    def to_text(self):
        if self.text is None:
            parts = []
            for word, has_space in map(self.graph.get_text_by_edge,
                                       self.edge_ids):
                parts.append(word)
                if has_space:
                    parts.append(" ")

            self.text = "".join(parts)

        return self.text


class Graph:
    """A special-purpose graph class, stored in a sqlite3 database"""
    def __init__(self, conn, run_migrations=True):
        self._conn = conn
        conn.row_factory = sqlite3.Row

        if self.is_initted():
            if run_migrations:
                self._run_migrations()

            self.order = int(self.get_info_text("order"))

            self._all_tokens = ",".join(["token%d_id" % i
                                         for i in xrange(self.order)])
            self._all_tokens_args = " AND ".join(
                ["token%d_id = ?" % i for i in xrange(self.order)])
            self._all_tokens_q = ",".join(["?" for i in xrange(self.order)])
            self._last_token = "token%d_id" % (self.order - 1)

            # Disable the SQLite cache. Its pages tend to get swapped
            # out, even if the database file is in buffer cache.
            c = self.cursor()
            c.execute("PRAGMA cache_size=0")
            c.execute("PRAGMA page_size=4096")

            # Each of these speed-for-reliability tradeoffs is useful for
            # bulk learning.
            c.execute("PRAGMA journal_mode=truncate")
            c.execute("PRAGMA temp_store=memory")
            c.execute("PRAGMA synchronous=OFF")

    def cursor(self):
        return self._conn.cursor()

    def commit(self):
        with trace_us("Brain.db_commit_us"):
            self._conn.commit()

    def close(self):
        return self._conn.close()

    def is_initted(self):
        try:
            self.get_info_text("order")
            return True
        except sqlite3.OperationalError:
            return False

    def set_info_text(self, attribute, text):
        c = self.cursor()

        if text is None:
            q = "DELETE FROM info WHERE attribute = ?"
            c.execute(q, (attribute,))
        else:
            q = "UPDATE info SET text = ? WHERE attribute = ?"
            c.execute(q, (text, attribute))

            if c.rowcount == 0:
                q = "INSERT INTO info (attribute, text) VALUES (?, ?)"
                c.execute(q, (attribute, text))

    def get_info_text(self, attribute, default=None, text_factory=None):
        c = self.cursor()

        if text_factory is not None:
            old_text_factory = self._conn.text_factory
            self._conn.text_factory = text_factory

        q = "SELECT text FROM info WHERE attribute = ?"
        row = c.execute(q, (attribute,)).fetchone()

        if text_factory is not None:
            self._conn.text_factory = old_text_factory

        if row:
            return row[0]

        return default

    def get_seq_expr(self, seq):
        # Format the sequence seq as (item1, item2, item2) as appropriate
        # for an IN () clause in SQL
        if len(seq) == 1:
            # Grab the first item from seq. Use an iterator so this works
            # with sets as well as lists.
            return "(%s)" % iter(seq).next()

        return str(tuple(seq))

    def get_token_by_text(self, text, create=False, stemmer=None):
        c = self.cursor()

        q = "SELECT id FROM tokens WHERE text = ?"

        row = c.execute(q, (text,)).fetchone()
        if row:
            return row[0]
        elif create:
            q = "INSERT INTO tokens (text, is_word) VALUES (?, ?)"

            is_word = bool(re.search("\w", text, re.UNICODE))
            c.execute(q, (text, is_word))

            token_id = c.lastrowid
            if stemmer is not None:
                stem = stemmer.stem(text)
                if stem is not None:
                    self.insert_stem(token_id, stem)

            return token_id

    def insert_stem(self, token_id, stem):
        q = "INSERT INTO token_stems (token_id, stem) VALUES (?, ?)"
        self._conn.execute(q, (token_id, stem))

    def get_token_stem_id(self, stem):
        q = "SELECT token_id FROM token_stems WHERE token_stems.stem = ?"
        rows = self._conn.execute(q, (stem,))
        if rows:
            return map(operator.itemgetter(0), rows)

    def get_word_tokens(self, token_ids):
        q = "SELECT id FROM tokens WHERE id IN %s AND is_word = 1" % \
            self.get_seq_expr(token_ids)

        rows = self._conn.execute(q)
        if rows:
            return map(operator.itemgetter(0), rows)

    def get_tokens(self, token_ids):
        q = "SELECT id FROM tokens WHERE id IN %s" % \
            self.get_seq_expr(token_ids)

        rows = self._conn.execute(q)
        if rows:
            return map(operator.itemgetter(0), rows)

    def get_node_by_tokens(self, tokens):
        c = self.cursor()

        q = "SELECT id FROM nodes WHERE %s" % self._all_tokens_args

        row = c.execute(q, tokens).fetchone()
        if row:
            return int(row[0])

        # if not found, create the node
        q = "INSERT INTO nodes (count, %s) " \
            "VALUES (0, %s)" % (self._all_tokens, self._all_tokens_q)
        c.execute(q, tokens)
        return c.lastrowid

    def get_text_by_edge(self, edge_id):
        q = "SELECT tokens.text, edges.has_space FROM nodes, edges, tokens " \
            "WHERE edges.id = ? AND edges.prev_node = nodes.id " \
            "AND nodes.%s = tokens.id" % self._last_token

        return self._conn.execute(q, (edge_id,)).fetchone()

    def get_random_token(self):
        # token 1 is the end_token_id, so we want to generate a random token
        # id from 2..max(id) inclusive.
        q = "SELECT (abs(random()) % (MAX(id)-1)) + 2 FROM tokens"
        row = self._conn.execute(q).fetchone()
        if row:
            return row[0]

    def get_random_node_with_token(self, token_id):
        c = self.cursor()

        q = "SELECT id FROM nodes WHERE token0_id = ? " \
            "LIMIT 1 OFFSET abs(random())%(SELECT count(*) FROM nodes " \
            "                              WHERE token0_id = ?)"

        row = c.execute(q, (token_id, token_id)).fetchone()
        if row:
            return int(row[0])

    def get_edge_logprob(self, edge_id):
        # Each edge goes from an n-gram node (word1, word2, word3) to
        # another (word2, word3, word4). Calculate the probability:
        # P(word4|word1,word2,word3) = count(edge_id) / count(prev_node_id)

        c = self.cursor()
        q = "SELECT edges.count, nodes.count FROM edges, nodes " \
            "WHERE edges.id = ? AND edges.prev_node = nodes.id"

        edge_count, node_count = c.execute(q, (edge_id,)).fetchone()
        return math.log(edge_count, 2) - math.log(node_count, 2)

    def has_space(self, edge_id):
        c = self.cursor()

        q = "SELECT has_space FROM edges WHERE id = ?"

        row = c.execute(q, (edge_id,)).fetchone()
        if row:
            return bool(row[0])

    def add_edge(self, prev_node, next_node, has_space):
        c = self.cursor()

        assert type(has_space) == types.BooleanType

        update_q = "UPDATE edges SET count = count + 1 " \
            "WHERE prev_node = ? AND next_node = ? AND has_space = ?"

        q = "INSERT INTO edges (prev_node, next_node, has_space, count) " \
            "VALUES (?, ?, ?, 1)"

        args = (prev_node, next_node, has_space)

        c.execute(update_q, args)
        if c.rowcount == 0:
            c.execute(q, args)

        # The count on the next_node in the nodes table must be
        # incremented here, to register that the node has been seen an
        # additional time. This is now handled by database triggers.

    def search_bfs(self, start_id, end_id, direction):
        if direction:
            q = "SELECT id, next_node FROM edges WHERE prev_node = ?"
        else:
            q = "SELECT id, prev_node FROM edges WHERE next_node = ?"

        c = self.cursor()

        left = collections.deque([(start_id, tuple())])
        while left:
            cur, path = left.popleft()
            rows = c.execute(q, (cur,))

            for rowid, next in rows:
                newpath = path + (rowid,)

                if next == end_id:
                    yield newpath
                else:
                    left.append((next, newpath))

    def search_random_walk(self, start_id, end_id, direction):
        """Walk once randomly from start_id to end_id."""
        if direction:
            q = "SELECT id, next_node " \
                "FROM edges WHERE prev_node = :last " \
                "LIMIT 1 OFFSET abs(random())%(SELECT count(*) from edges " \
                "                              WHERE prev_node = :last)"
        else:
            q = "SELECT id, prev_node " \
                "FROM edges WHERE next_node = :last " \
                "LIMIT 1 OFFSET abs(random())%(SELECT count(*) from edges " \
                "                              WHERE next_node = :last)"

        c = self.cursor()

        left = collections.deque([(start_id, tuple())])
        while left:
            cur, path = left.popleft()
            rows = c.execute(q, dict(last=cur))

            # Note: the LIMIT 1 above means this list only contains
            # one row. Using a list here so this matches the bfs()
            # code, so the two functions can be more easily combined
            # later.
            for rowid, next in rows:
                newpath = path + (rowid,)

                if next == end_id:
                    yield newpath
                else:
                    left.append((next, newpath))

    def init(self, order, tokenizer, run_migrations=True):
        c = self.cursor()

        log.debug("Creating table: info")
        c.execute("""
CREATE TABLE info (
    attribute TEXT NOT NULL PRIMARY KEY,
    text TEXT NOT NULL)""")

        log.debug("Creating table: tokens")
        c.execute("""
CREATE TABLE tokens (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    text TEXT UNIQUE NOT NULL,
    is_word INTEGER NOT NULL)""")

        tokens = []
        for i in xrange(order):
            tokens.append("token%d_id INTEGER REFERENCES token(id)" % i)

        log.debug("Creating table: token_stems")
        c.execute("""
CREATE TABLE token_stems (
    token_id INTEGER,
    stem TEXT NOT NULL)""")

        log.debug("Creating table: nodes")
        c.execute("""
CREATE TABLE nodes (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    count INTEGER NOT NULL,
    %s)""" % ',\n    '.join(tokens))

        log.debug("Creating table: edges")
        c.execute("""
CREATE TABLE edges (
    id INTEGER PRIMARY KEY AUTOINCREMENT,
    prev_node INTEGER NOT NULL REFERENCES nodes(id),
    next_node INTEGER NOT NULL REFERENCES nodes(id),
    count INTEGER NOT NULL,
    has_space INTEGER NOT NULL)""")

        if run_migrations:
            self._run_migrations()

        # save the order of this brain
        self.set_info_text("order", str(order))
        self.order = order

        # save the tokenizer
        self.set_info_text("tokenizer", tokenizer)

        # save the brain/schema version
        self.set_info_text("version", "2")

        self.commit()
        self.ensure_indexes()

        self.close()

    def drop_reply_indexes(self):
        self._conn.execute("DROP INDEX IF EXISTS edges_all_next")
        self._conn.execute("DROP INDEX IF EXISTS edges_all_prev")

        self._conn.execute("""
CREATE INDEX IF NOT EXISTS learn_index ON edges
    (prev_node, next_node)""")

    def ensure_indexes(self):
        c = self.cursor()

        # remove the temporary learning index if it exists
        c.execute("DROP INDEX IF EXISTS learn_index")

        token_ids = ",".join(["token%d_id" % i for i in xrange(self.order)])
        c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS nodes_token_ids on nodes
    (%s)""" % token_ids)

        c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS edges_all_next ON edges
    (next_node, prev_node, has_space, count)""")

        c.execute("""
CREATE UNIQUE INDEX IF NOT EXISTS edges_all_prev ON edges
    (prev_node, next_node, has_space, count)""")

    def delete_token_stems(self):
        c = self.cursor()

        # drop the two stem indexes
        c.execute("DROP INDEX IF EXISTS token_stems_stem")
        c.execute("DROP INDEX IF EXISTS token_stems_id")

        # delete all the existing stems from the table
        c.execute("DELETE FROM token_stems")

        self.commit()

    def update_token_stems(self, stemmer):
        # stemmer is a CobeStemmer
        with trace_ms("Db.update_token_stems_ms"):
            c = self.cursor()

            insert_c = self.cursor()
            insert_q = "INSERT INTO token_stems (token_id, stem) VALUES (?, ?)"

            q = c.execute("""
SELECT id, text FROM tokens""")

            for row in q:
                stem = stemmer.stem(row[1])
                if stem is not None:
                    insert_c.execute(insert_q, (row[0], stem))

            self.commit()

        with trace_ms("Db.index_token_stems_ms"):
            c.execute("""
CREATE INDEX token_stems_id on token_stems (token_id)""")
            c.execute("""
CREATE INDEX token_stems_stem on token_stems (stem)""")

    def _run_migrations(self):
        with trace_us("Db.run_migrations_us"):
            self._maybe_drop_tokens_text_index()
            self._maybe_create_node_count_triggers()

    def _maybe_drop_tokens_text_index(self):
        # tokens_text was an index on tokens.text, deemed redundant since
        # tokens.text is declared UNIQUE, and sqlite automatically creates
        # indexes for UNIQUE columns
        self._conn.execute("DROP INDEX IF EXISTS tokens_text")

    def _maybe_create_node_count_triggers(self):
        # Create triggers on the edges table to update nodes counts.
        # In previous versions, the node counts were updated with a
        # separate query. Moving them into triggers improves
        # performance.
        c = self.cursor()

        c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_insert_trigger AFTER INSERT ON edges
    BEGIN UPDATE nodes SET count = count + NEW.count
        WHERE nodes.id = NEW.next_node; END;""")

        c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_update_trigger AFTER UPDATE ON edges
    BEGIN UPDATE nodes SET count = count + (NEW.count - OLD.count)
        WHERE nodes.id = NEW.next_node; END;""")

        c.execute("""
CREATE TRIGGER IF NOT EXISTS edges_delete_trigger AFTER DELETE ON edges
    BEGIN UPDATE nodes SET count = count - old.count
        WHERE nodes.id = OLD.next_node; END;""")