This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/align/tests/test_expectmax.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
import numpy as np
from numpy.testing import (assert_equal,
                           assert_array_equal,
                           assert_array_almost_equal,
                           assert_raises)
from .. import floating
from .. import expectmax as em


def test_compute_em_demons_step_2d():
    r"""
    Compares the output of the demons step in 2d against an analytical
    step. The fixed image is given by $F(x) = \frac{1}{2}||x - c_f||^2$, the
    moving image is given by $G(x) = \frac{1}{2}||x - c_g||^2$,
    $x, c_f, c_g \in R^{2}$

    References
    ----------
    [Vercauteren09] Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N.
                    (2009). Diffeomorphic demons: efficient non-parametric
                    image registration. NeuroImage, 45(1 Suppl), S61-72.
                    doi:10.1016/j.neuroimage.2008.10.040
    """
    #Select arbitrary images' shape (same shape for both images)
    sh = (30, 20)

    #Select arbitrary centers
    c_f = np.asarray(sh)/2
    c_g = c_f + 0.5

    #Compute the identity vector field I(x) = x in R^2
    x_0 = np.asarray(range(sh[0]))
    x_1 = np.asarray(range(sh[1]))
    X = np.ndarray(sh + (2,), dtype = np.float64)
    O = np.ones(sh)
    X[...,0]= x_0[:, None] * O
    X[...,1]= x_1[None, :] * O

    #Compute the gradient fields of F and G
    grad_F = X - c_f
    grad_G = X - c_g

    #The squared norm of grad_G to be used later
    sq_norm_grad_G = np.sum(grad_G**2,-1)

    #Compute F and G
    F = 0.5*np.sum(grad_F**2,-1)
    G = 0.5*sq_norm_grad_G
    delta_field =  G - F

    #Now select an arbitrary parameter for $\sigma_x$ (eq 4 in [Vercauteren09])
    sigma_x_sq = 1.5

    #Set arbitrary values for $\sigma_i$ (eq. 4 in [Vercauteren09])
    #The original Demons algorithm used simply |F(x) - G(x)| as an
    #estimator, so let's use it as well
    sigma_i_sq = (F - G)**2

    #Select some pixels to have special values
    np.random.seed(1346491)
    random_labels = np.random.randint(0, 5, sh[0]*sh[1])
    random_labels = random_labels.reshape(sh)

    random_labels[sigma_i_sq==0] = 2 #this label is used to set sigma_i_sq == 0 below
    random_labels[sq_norm_grad_G==0] = 2 #this label is used to set gradient == 0 below

    expected = np.zeros_like(grad_G)
    #Pixels with sigma_i_sq = inf
    sigma_i_sq[random_labels == 0] = np.inf
    expected[random_labels == 0, ...] = 0

    #Pixels with gradient!=0 and sigma_i_sq=0
    sqnrm = sq_norm_grad_G[random_labels == 1]
    sigma_i_sq[random_labels == 1] = 0
    expected[random_labels == 1, 0] = delta_field[random_labels == 1]*grad_G[random_labels == 1, 0]/sqnrm
    expected[random_labels == 1, 1] = delta_field[random_labels == 1]*grad_G[random_labels == 1, 1]/sqnrm

    #Pixels with gradient=0 and sigma_i_sq=0
    sigma_i_sq[random_labels == 2] = 0
    grad_G[random_labels == 2, ...] = 0
    expected[random_labels == 2, ...] = 0

    #Pixels with gradient=0 and sigma_i_sq!=0
    grad_G[random_labels == 3, ...] = 0

    #Directly compute the demons step according to eq. 4 in [Vercauteren09]
    num = (sigma_x_sq * (F - G))[random_labels >= 3]
    den = (sigma_x_sq * sq_norm_grad_G + sigma_i_sq)[random_labels >= 3]

    expected[random_labels >= 3] = -1 * np.array(grad_G[random_labels >= 3]) #This is $J^{P}$ in eq. 4 [Vercauteren09]
    expected[random_labels >= 3,...] *= (num / den)[..., None]

    #Now compute it using the implementation under test

    actual = np.empty_like(expected, dtype=floating)
    em.compute_em_demons_step_2d(np.array(delta_field, dtype=floating),
                                 np.array(sigma_i_sq, dtype=floating),
                                 np.array(grad_G, dtype=floating),
                                 sigma_x_sq,
                                 actual)

    #Test sigma_i_sq == inf
    try:
        assert_array_almost_equal(actual[random_labels==0], expected[random_labels==0])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == inf")

    #Test sigma_i_sq == 0 and gradient != 0
    try:
        assert_array_almost_equal(actual[random_labels==1], expected[random_labels==1])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == 0 and gradient != 0")

    #Test sigma_i_sq == 0 and gradient == 0
    try:
        assert_array_almost_equal(actual[random_labels==2], expected[random_labels==2])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == 0 and gradient == 0")

    #Test sigma_i_sq != 0 and gradient == 0
    try:
        assert_array_almost_equal(actual[random_labels==3], expected[random_labels==3])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq != 0 and gradient == 0 ")

    #Test sigma_i_sq != 0 and gradient != 0
    try:
        assert_array_almost_equal(actual[random_labels==4], expected[random_labels==4])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq != 0 and gradient != 0")


def test_compute_em_demons_step_3d():
    r"""
    Compares the output of the demons step in 3d against an analytical
    step. The fixed image is given by $F(x) = \frac{1}{2}||x - c_f||^2$, the
    moving image is given by $G(x) = \frac{1}{2}||x - c_g||^2$,
    $x, c_f, c_g \in R^{3}$

    References
    ----------
    [Vercauteren09] Vercauteren, T., Pennec, X., Perchant, A., & Ayache, N.
                    (2009). Diffeomorphic demons: efficient non-parametric
                    image registration. NeuroImage, 45(1 Suppl), S61-72.
                    doi:10.1016/j.neuroimage.2008.10.040
    """

    #Select arbitrary images' shape (same shape for both images)
    sh = (20, 15, 10)

    #Select arbitrary centers
    c_f = np.asarray(sh)/2
    c_g = c_f + 0.5

    #Compute the identity vector field I(x) = x in R^2
    x_0 = np.asarray(range(sh[0]))
    x_1 = np.asarray(range(sh[1]))
    x_2 = np.asarray(range(sh[2]))
    X = np.ndarray(sh + (3,), dtype = np.float64)
    O = np.ones(sh)
    X[...,0]= x_0[:, None, None] * O
    X[...,1]= x_1[None, :, None] * O
    X[...,2]= x_2[None, None, :] * O

    #Compute the gradient fields of F and G
    grad_F = X - c_f
    grad_G = X - c_g

    #The squared norm of grad_G to be used later
    sq_norm_grad_G = np.sum(grad_G**2,-1)

    #Compute F and G
    F = 0.5*np.sum(grad_F**2,-1)
    G = 0.5*sq_norm_grad_G
    delta_field =  G - F

    #Now select an arbitrary parameter for $\sigma_x$ (eq 4 in [Vercauteren09])
    sigma_x_sq = 1.5

    #Set arbitrary values for $\sigma_i$ (eq. 4 in [Vercauteren09])
    #The original Demons algorithm used simply |F(x) - G(x)| as an
    #estimator, so let's use it as well
    sigma_i_sq = (F - G)**2

    #Select some pixels to have special values
    np.random.seed(1346491)
    random_labels = np.random.randint(0, 5, sh[0]*sh[1]*sh[2])
    random_labels = random_labels.reshape(sh)

    random_labels[sigma_i_sq==0] = 2 #this label is used to set sigma_i_sq == 0 below
    random_labels[sq_norm_grad_G==0] = 2 #this label is used to set gradient == 0 below

    expected = np.zeros_like(grad_G)
    #Pixels with sigma_i_sq = inf
    sigma_i_sq[random_labels == 0] = np.inf
    expected[random_labels == 0, ...] = 0

    #Pixels with gradient!=0 and sigma_i_sq=0
    sqnrm = sq_norm_grad_G[random_labels == 1]
    sigma_i_sq[random_labels == 1] = 0
    expected[random_labels == 1, 0] = delta_field[random_labels == 1]*grad_G[random_labels == 1, 0]/sqnrm
    expected[random_labels == 1, 1] = delta_field[random_labels == 1]*grad_G[random_labels == 1, 1]/sqnrm
    expected[random_labels == 1, 2] = delta_field[random_labels == 1]*grad_G[random_labels == 1, 2]/sqnrm

    #Pixels with gradient=0 and sigma_i_sq=0
    sigma_i_sq[random_labels == 2] = 0
    grad_G[random_labels == 2, ...] = 0
    expected[random_labels == 2, ...] = 0

    #Pixels with gradient=0 and sigma_i_sq!=0
    grad_G[random_labels == 3, ...] = 0

    #Directly compute the demons step according to eq. 4 in [Vercauteren09]
    num = (sigma_x_sq * (F - G))[random_labels >= 3]
    den = (sigma_x_sq * sq_norm_grad_G + sigma_i_sq)[random_labels >= 3]

    expected[random_labels >= 3] = -1 * np.array(grad_G[random_labels >= 3]) #This is $J^{P}$ in eq. 4 [Vercauteren09]
    expected[random_labels >= 3,...] *= (num / den)[...,None]

    #Now compute it using the implementation under test
    actual = np.empty_like(expected, dtype=floating)
    em.compute_em_demons_step_3d(np.array(delta_field, dtype=floating),
                                 np.array(sigma_i_sq, dtype=floating),
                                 np.array(grad_G, dtype=floating),
                                 sigma_x_sq,
                                 actual)

    #Test sigma_i_sq == inf
    try:
        assert_array_almost_equal(actual[random_labels==0], expected[random_labels==0])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == inf")

    #Test sigma_i_sq == 0 and gradient != 0
    try:
        assert_array_almost_equal(actual[random_labels==1], expected[random_labels==1])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == 0 and gradient != 0")

    #Test sigma_i_sq == 0 and gradient == 0
    try:
        assert_array_almost_equal(actual[random_labels==2], expected[random_labels==2])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq == 0 and gradient == 0")

    #Test sigma_i_sq != 0 and gradient == 0
    try:
        assert_array_almost_equal(actual[random_labels==3], expected[random_labels==3])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq != 0 and gradient == 0 ")

    #Test sigma_i_sq != 0 and gradient != 0
    try:
        assert_array_almost_equal(actual[random_labels==4], expected[random_labels==4])
    except AssertionError:
        raise AssertionError("Failed for sigma_i_sq != 0 and gradient != 0")

def test_quantize_positive_2d():
    np.random.seed(1246592)

    num_levels = 11 # an arbitrary number of quantization levels
    img_shape = (15, 20) # arbitrary test image shape (must contain at least 3 elements)
    min_positive = 0.1
    max_positive = 1.0
    epsilon = 1e-8

    delta = (max_positive - min_positive + epsilon) / (num_levels - 1)
    true_levels = np.zeros((num_levels,), dtype = np.float32)
    # put the intensities at the centers of the bins
    true_levels[1:] = np.linspace(min_positive+delta*0.5, max_positive-delta*0.5, num_levels-1)
    true_quantization = np.empty(img_shape, dtype = np.int32) # generate a target quantization image
    random_labels = np.random.randint(0, num_levels, np.size(true_quantization))

    # make sure there is at least one element equal to 0, 1 and num_levels-1
    random_labels[0] = 0
    random_labels[1] = 1
    random_labels[2] = num_levels-1
    true_quantization[...] = random_labels.reshape(img_shape)

    noise_amplitude = np.min([delta / 4.0, min_positive / 4.0]) # make sure additive noise doesn't change the quantization result
    noise = np.random.ranf(np.size(true_quantization)).reshape(img_shape) * noise_amplitude
    noise = noise.astype(floating)
    input_image = np.ndarray(img_shape, dtype = floating)
    input_image[...] = true_levels[true_quantization] + noise # assign intensities plus noise
    input_image[true_quantization == 0] = 0 # preserve original zeros
    input_image[true_quantization == 1] = min_positive # preserve min positive value
    input_image[true_quantization == num_levels-1] = max_positive # preserve max positive value

    out, levels, hist = em.quantize_positive_2d(input_image, num_levels)
    levels = np.asarray(levels)
    assert_array_equal(out, true_quantization)
    assert_array_almost_equal(levels, true_levels)
    for i in range(num_levels):
        current_bin = np.asarray(true_quantization == i).sum()
        assert_equal(hist[i], current_bin)

    #test num_levels<2 and input image with zeros and non-zeros everywhere
    assert_raises(ValueError, em.quantize_positive_2d, input_image, 0)
    assert_raises(ValueError, em.quantize_positive_2d, input_image, 1)

    out, levels, hist = em.quantize_positive_2d(np.zeros(img_shape, dtype=floating), 2)
    assert_equal(out, np.zeros(img_shape, dtype=np.int32))

    out, levels, hist = em.quantize_positive_2d(np.ones(img_shape, dtype=floating), 2)
    assert_equal(out, np.ones(img_shape, dtype=np.int32))


def test_quantize_positive_3d():
    np.random.seed(1246592)

    num_levels = 11 # an arbitrary number of quantization levels
    img_shape = (5, 10, 15) # arbitrary test image shape (must contain at least 3 elements)
    min_positive = 0.1
    max_positive = 1.0
    epsilon = 1e-8

    delta = (max_positive - min_positive + epsilon) / (num_levels - 1)
    true_levels = np.zeros((num_levels,), dtype = np.float32)
    # put the intensities at the centers of the bins
    true_levels[1:] = np.linspace(min_positive+delta*0.5, max_positive-delta*0.5, num_levels-1)
    true_quantization = np.empty(img_shape, dtype = np.int32) # generate a target quantization image
    random_labels = np.random.randint(0, num_levels, np.size(true_quantization))

    # make sure there is at least one element equal to 0, 1 and num_levels-1
    random_labels[0] = 0
    random_labels[1] = 1
    random_labels[2] = num_levels-1
    true_quantization[...] = random_labels.reshape(img_shape)

    noise_amplitude = np.min([delta / 4.0, min_positive / 4.0]) # make sure additive noise doesn't change the quantization result
    noise = np.random.ranf(np.size(true_quantization)).reshape(img_shape) * noise_amplitude
    noise = noise.astype(floating)
    input_image = np.ndarray(img_shape, dtype = floating)
    input_image[...] = true_levels[true_quantization] + noise # assign intensities plus noise
    input_image[true_quantization == 0] = 0 # preserve original zeros
    input_image[true_quantization == 1] = min_positive # preserve min positive value
    input_image[true_quantization == num_levels-1] = max_positive # preserve max positive value

    out, levels, hist = em.quantize_positive_3d(input_image, num_levels)
    levels = np.asarray(levels)
    assert_array_equal(out, true_quantization)
    assert_array_almost_equal(levels, true_levels)
    for i in range(num_levels):
        current_bin = np.asarray(true_quantization == i).sum()
        assert_equal(hist[i], current_bin)

    #test num_levels<2 and input image with zeros and non-zeros everywhere
    assert_raises(ValueError, em.quantize_positive_3d, input_image, 0)
    assert_raises(ValueError, em.quantize_positive_3d, input_image, 1)

    out, levels, hist = em.quantize_positive_3d(np.zeros(img_shape, dtype=floating), 2)
    assert_equal(out, np.zeros(img_shape, dtype=np.int32))

    out, levels, hist = em.quantize_positive_3d(np.ones(img_shape, dtype=floating), 2)
    assert_equal(out, np.ones(img_shape, dtype=np.int32))


def test_compute_masked_class_stats_2d():
    np.random.seed(1246592)

    shape = (32, 32)

    #Create random labels
    labels = np.ndarray(shape, dtype=np.int32)
    labels[...] = np.random.randint(2, 10, np.size(labels)).reshape(shape)
    labels[0, 0] = 1 # now label 0 is not present and label 1 occurs once

    #Create random values
    values = np.random.randn(shape[0], shape[1]).astype(floating)
    values *= labels
    values += labels

    expected_means = [0, values[0, 0]] + [values[labels == i].mean() for i in range(2, 10)]
    expected_vars = [np.inf, np.inf] + [values[labels == i].var() for i in range(2, 10)]

    mask = np.ones(shape, dtype = np.int32)
    means, vars = em.compute_masked_class_stats_2d(mask, values, 10, labels)
    assert_array_almost_equal(means, expected_means, decimal = 4)
    assert_array_almost_equal(vars, expected_vars, decimal = 4)

def test_compute_masked_class_stats_3d():
    np.random.seed(1246592)

    shape = (32, 32, 32)

    #Create random labels
    labels = np.ndarray(shape, dtype=np.int32)
    labels[...] = np.random.randint(2, 10, np.size(labels)).reshape(shape)

    labels[0, 0, 0] = 1 # now label 0 is not present and label 1 occurs once

    #Create random values
    values = np.random.randn(shape[0], shape[1], shape[2]).astype(floating)
    values *= labels
    values += labels

    expected_means = [0, values[0, 0, 0]] + [values[labels == i].mean() for i in range(2, 10)]
    expected_vars = [np.inf, np.inf] + [values[labels == i].var() for i in range(2, 10)]

    mask = np.ones(shape, dtype = np.int32)
    means, vars = em.compute_masked_class_stats_3d(mask, values, 10, labels)
    assert_array_almost_equal(means, expected_means, decimal = 4)
    assert_array_almost_equal(vars, expected_vars, decimal = 4)


if __name__=='__main__':
    test_compute_em_demons_step_2d()
    test_compute_em_demons_step_3d()
    test_quantize_positive_2d()
    test_quantize_positive_3d()
    test_compute_masked_class_stats_2d()
    test_compute_masked_class_stats_3d()