This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/core/optimize.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
""" A unified interface for performing and debugging optimization problems.

Only L-BFGS-B and Powell is supported in this class for versions of
Scipy < 0.12. All optimizers are available for scipy >= 0.12.
"""
import abc
from distutils.version import LooseVersion
import numpy as np
import scipy
import scipy.sparse as sps
import scipy.optimize as opt
from dipy.utils.six import with_metaclass

SCIPY_LESS_0_12 = LooseVersion(scipy.version.short_version) < '0.12'

if not SCIPY_LESS_0_12:
    from scipy.optimize import minimize
else:
    from scipy.optimize import fmin_l_bfgs_b, fmin_powell


class Optimizer(object):

    def __init__(self, fun,  x0, args=(), method='L-BFGS-B', jac=None,
                 hess=None, hessp=None, bounds=None, constraints=(),
                 tol=None, callback=None, options=None, evolution=False):
        """ A class for handling minimization of scalar function of one or more
        variables.

        Parameters
        ----------
        fun : callable
            Objective function.

        x0 : ndarray
            Initial guess.

        args : tuple, optional
            Extra arguments passed to the objective function and its
            derivatives (Jacobian, Hessian).

        method : str, optional
            Type of solver.  Should be one of

                - 'Nelder-Mead'
                - 'Powell'
                - 'CG'
                - 'BFGS'
                - 'Newton-CG'
                - 'Anneal'
                - 'L-BFGS-B'
                - 'TNC'
                - 'COBYLA'
                - 'SLSQP'
                - 'dogleg'
                - 'trust-ncg'

        jac : bool or callable, optional
            Jacobian of objective function. Only for CG, BFGS, Newton-CG,
            dogleg, trust-ncg.
            If `jac` is a Boolean and is True, `fun` is assumed to return the
            value of Jacobian along with the objective function. If False, the
            Jacobian will be estimated numerically.
            `jac` can also be a callable returning the Jacobian of the
            objective. In this case, it must accept the same arguments
            as `fun`.

        hess, hessp : callable, optional
            Hessian of objective function or Hessian of objective function
            times an arbitrary vector p.  Only for Newton-CG,
            dogleg, trust-ncg.
            Only one of `hessp` or `hess` needs to be given.  If `hess` is
            provided, then `hessp` will be ignored.  If neither `hess` nor
            `hessp` is provided, then the hessian product will be approximated
            using finite differences on `jac`. `hessp` must compute the Hessian
            times an arbitrary vector.

        bounds : sequence, optional
            Bounds for variables (only for L-BFGS-B, TNC and SLSQP).
            ``(min, max)`` pairs for each element in ``x``, defining
            the bounds on that parameter. Use None for one of ``min`` or
            ``max`` when there is no bound in that direction.

        constraints : dict or sequence of dict, optional
            Constraints definition (only for COBYLA and SLSQP).
            Each constraint is defined in a dictionary with fields:
                type : str
                    Constraint type: 'eq' for equality, 'ineq' for inequality.
                fun : callable
                    The function defining the constraint.
                jac : callable, optional
                    The Jacobian of `fun` (only for SLSQP).
                args : sequence, optional
                    Extra arguments to be passed to the function and Jacobian.
            Equality constraint means that the constraint function result is to
            be zero whereas inequality means that it is to be non-negative.
            Note that COBYLA only supports inequality constraints.

        tol : float, optional
            Tolerance for termination. For detailed control, use
            solver-specific options.

        callback : callable, optional
            Called after each iteration, as ``callback(xk)``, where ``xk`` is
            the current parameter vector. Only available using Scipy >= 0.12.

        options : dict, optional
            A dictionary of solver options. All methods accept the following
            generic options:
                maxiter : int
                    Maximum number of iterations to perform.
                disp : bool
                    Set to True to print convergence messages.
            For method-specific options, see
            `show_options('minimize', method)`.

        evolution : bool, optional
            save history of x for each iteration. Only available using Scipy
            >= 0.12.

        See also
        ---------
        scipy.optimize.minimize
        """

        self.size_of_x = len(x0)
        self._evol_kx = None

        _eps = np.finfo(float).eps

        if SCIPY_LESS_0_12:

            if evolution is True:
                print('Saving history is available only with Scipy >= 0.12.')

            if method == 'L-BFGS-B':
                default_options = {'maxcor': 10, 'ftol': 1e-7, 'gtol': 1e-5,
                                   'eps': 1e-8, 'maxiter': 1000}

                if jac is None:
                    approx_grad = True
                else:
                    approx_grad = False

                if options is None:
                    options = default_options

                if options is not None:
                    for key in options:
                        default_options[key] = options[key]
                    options = default_options

                try:
                    out = fmin_l_bfgs_b(fun, x0, fprime=jac, args=args,
                                        approx_grad=approx_grad,
                                        bounds=bounds,
                                        m=options['maxcor'],
                                        factr=options['ftol']/_eps,
                                        pgtol=options['gtol'],
                                        epsilon=options['eps'],
                                        maxiter=options['maxiter'])
                except TypeError:

                    msg = 'In Scipy ' + scipy.__version__ + ' `maxiter` '
                    msg += 'parameter is not available for L-BFGS-B. \n Using '
                    msg += '`maxfun` instead with value twice of maxiter.'

                    print(msg)
                    out = fmin_l_bfgs_b(fun, x0, fprime=jac, args=args,
                                        approx_grad=approx_grad,
                                        bounds=bounds,
                                        m=options['maxcor'],
                                        factr=options['ftol']/_eps,
                                        pgtol=options['gtol'],
                                        epsilon=options['eps'],
                                        maxfun=options['maxiter'] * 2)

                res = {'x': out[0], 'fun': out[1], 'nfev': out[2]['funcalls']}
                try:
                    res['nit'] = out[2]['nit']
                except KeyError:
                    res['nit'] = None

            elif method == 'Powell':

                default_options = {'xtol': 0.0001, 'ftol': 0.0001,
                                   'maxiter': None}

                if options is None:
                    options = default_options

                if options is not None:
                    for key in options:
                        default_options[key] = options[key]
                    options = default_options

                out = fmin_powell(fun, x0, args,
                                  xtol=options['xtol'],
                                  ftol=options['ftol'],
                                  maxiter=options['maxiter'],
                                  full_output=True,
                                  disp=False,
                                  retall=True)

                xopt, fopt, direc, iterations, funcs, warnflag, allvecs = out
                res = {'x': xopt, 'fun': fopt,
                       'nfev': funcs, 'nit': iterations}

            else:

                msg = 'Only L-BFGS-B and Powell is supported in this class '
                msg += 'for versions of Scipy < 0.12.'
                raise ValueError(msg)

        if not SCIPY_LESS_0_12:

            if evolution is True:

                self._evol_kx = []

                def history_of_x(kx):
                    self._evol_kx.append(kx)
                res = minimize(fun, x0, args, method, jac, hess, hessp, bounds,
                               constraints, tol, callback=history_of_x,
                               options=options)

            else:

                res = minimize(fun, x0, args, method, jac, hess, hessp, bounds,
                               constraints, tol, callback, options)

        self.res = res

    @property
    def xopt(self):

        return self.res['x']

    @property
    def fopt(self):

        return self.res['fun']

    @property
    def nit(self):

        return self.res['nit']

    @property
    def nfev(self):

        return self.res['nfev']

    @property
    def message(self):

        return self.res['message']

    def print_summary(self):

        print(self.res)

    @property
    def evolution(self):
        if self._evol_kx is not None:
            return np.asarray(self._evol_kx)
        else:
            return None


def spdot(A, B):
    """The same as np.dot(A, B), except it works even if A or B or both
    are sparse matrices.

    Parameters
    ----------
    A, B : arrays of shape (m, n), (n, k)

    Returns
    -------
    The matrix product AB. If both A and B are sparse, the result will be a
    sparse matrix. Otherwise, a dense result is returned

    See discussion here:
    http://mail.scipy.org/pipermail/scipy-user/2010-November/027700.html
    """
    if sps.issparse(A) and sps.issparse(B):
        return A * B
    elif sps.issparse(A) and not sps.issparse(B):
        return (A * B).view(type=B.__class__)
    elif not sps.issparse(A) and sps.issparse(B):
        return (B.T * A.T).T.view(type=A.__class__)
    else:
        return np.dot(A, B)


def sparse_nnls(y, X,
                momentum=1,
                step_size=0.01,
                non_neg=True,
                check_error_iter=10,
                max_error_checks=10,
                converge_on_sse=0.99):
    """

    Solve y=Xh for h, using gradient descent, with X a sparse matrix

    Parameters
    ----------

    y : 1-d array of shape (N)
        The data. Needs to be dense.

    X : ndarray. May be either sparse or dense. Shape (N, M)
       The regressors

    momentum : float, optional (default: 1).
        The persistence of the gradient.

    step_size : float, optional (default: 0.01).
        The increment of parameter update in each iteration

    non_neg : Boolean, optional (default: True)
        Whether to enforce non-negativity of the solution.

    check_error_iter : int (default:10)
        How many rounds to run between error evaluation for
        convergence-checking.

    max_error_checks : int (default: 10)
        Don't check errors more than this number of times if no improvement in
        r-squared is seen.

    converge_on_sse : float (default: 0.99)
      a percentage improvement in SSE that is required each time to say
      that things are still going well.

    Returns
    -------
    h_best : The best estimate of the parameters.

    """
    num_regressors = X.shape[1]
    # Initialize the parameters at the origin:
    h = np.zeros(num_regressors)
    # If nothing good happens, we'll return that:
    h_best = h
    gradient = np.zeros(num_regressors)
    iteration = 1
    ss_residuals_min = np.inf  # This will keep track of the best solution
    sse_best = np.inf   # This will keep track of the best performance so far
    count_bad = 0  # Number of times estimation error has gone up.
    error_checks = 0  # How many error checks have we done so far

    while 1:
        if iteration > 1:
            # The sum of squared error given the current parameter setting:
            sse = np.sum((y - spdot(X, h)) ** 2)
            # The gradient is (Kay 2008 supplemental page 27):
            gradient = spdot(X.T, spdot(X, h) - y)
            gradient += momentum * gradient
            # Normalize to unit-length
            unit_length_gradient = (gradient /
                                    np.sqrt(np.dot(gradient, gradient)))
            # Update the parameters in the direction of the gradient:
            h -= step_size * unit_length_gradient
            if non_neg:
                # Set negative values to 0:
                h[h < 0] = 0

        # Every once in a while check whether it's converged:
        if np.mod(iteration, check_error_iter):
            # This calculates the sum of squared residuals at this point:
            sse = np.sum((y - spdot(X, h)) ** 2)
            # Did we do better this time around?
            if sse < ss_residuals_min:
                # Update your expectations about the minimum error:
                ss_residuals_min = sse
                h_best = h  # This holds the best params we have so far
                # Are we generally (over iterations) converging on
                # sufficient improvement in r-squared?
                if sse < converge_on_sse * sse_best:
                    sse_best = sse
                    count_bad = 0
                else:
                    count_bad += 1
            else:
                count_bad += 1

            if count_bad >= max_error_checks:
                return h_best
            error_checks += 1
        iteration += 1


class SKLearnLinearSolver(with_metaclass(abc.ABCMeta, object)):
    """
    Provide a sklearn-like uniform interface to algorithms that solve problems
    of the form: $y = Ax$ for $x$

    Sub-classes of SKLearnLinearSolver should provide a 'fit' method that have
    the following signature: `SKLearnLinearSolver.fit(X, y)`, which would set
    an attribute `SKLearnLinearSolver.coef_`, with the shape (X.shape[1],),
    such that an estimate of y can be calculated as:
    `y_hat = np.dot(X, SKLearnLinearSolver.coef_.T)`
    """
    def __init__(self, *args, **kwargs):
        self._args = args
        self._kwargs = kwargs

    @abc.abstractmethod
    def fit(self, X, y):
        """Implement for all derived classes """

    def predict(self, X):
        """
        Predict using the result of the model

        Parameters
        ----------
        X : array-like (n_samples, n_features)
            Samples.

        Returns
        -------
        C : array, shape = (n_samples,)
            Predicted values.
        """
        X = np.asarray(X)
        return np.dot(X, self.coef_.T)


class NonNegativeLeastSquares(SKLearnLinearSolver):
    """
    A sklearn-like interface to scipy.optimize.nnls

    """
    def fit(self, X, y):
        """
        Fit the NonNegativeLeastSquares linear model to data

        Parameters
        ----------

        """
        coef, rnorm = opt.nnls(X, y)
        self.coef_ = coef
        return self