This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/denoise/noise_estimate.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
from __future__ import division, print_function

import numpy as np

from scipy.special import gammainccinv
from scipy.ndimage.filters import convolve


def _inv_nchi_cdf(N, K, alpha):
    """Inverse CDF for the noncentral chi distribution
    See [1]_ p.3 section 2.3"""
    return gammainccinv(N * K, 1 - alpha) / K


# List of optimal quantile for PIESNO.
# Get optimal quantile for N if available, else use the median.
opt_quantile = {1: 0.79681213002002,
                2: 0.7306303027491917,
                4: 0.6721952960782169,
                8: 0.6254030432343569,
               16: 0.5900487123737876,
               32: 0.5641772300866416,
               64: 0.5455611840489607,
              128: 0.5322811923303339}


def piesno(data, N, alpha=0.01, l=100, itermax=100, eps=1e-5, return_mask=False):
    """
    Probabilistic Identification and Estimation of Noise (PIESNO).

    Parameters
    -----------
    data : ndarray
        The magnitude signals to analyse. The last dimension must contain the
        same realisation of the volume, such as dMRI or fMRI data.

    N : int
        The number of phase array coils of the MRI scanner.
        If your scanner does a SENSE reconstruction, ALWAYS use N=1, as the noise
        profile is always Rician.
        If your scanner does a GRAPPA reconstruction, set N as the number
        of phase array coils.

    alpha : float
        Probabilistic estimation threshold for the gamma function.

    l : int
        number of initial estimates for sigma to try.

    itermax : int
        Maximum number of iterations to execute if convergence
        is not reached.

    eps : float
        Tolerance for the convergence criterion. Convergence is
        reached if two subsequent estimates are smaller than eps.

    return_mask : bool
        If True, return a mask identyfing all the pure noise voxel
        that were found.

    Returns
    --------
    sigma : float
        The estimated standard deviation of the gaussian noise.

    mask : ndarray (optional)
        A boolean mask indicating the voxels identified as pure noise.

    Note
    ------
    This function assumes two things : 1. The data has a noisy, non-masked
    background and 2. The data is a repetition of the same measurements
    along the last axis, i.e. dMRI or fMRI data, not structural data like T1/T2.

    This function processes the data slice by slice, as originally designed in
    the paper. Use it to get a slice by slice estimation of the noise, as in
    spinal cord imaging for example.

    References
    ------------

    .. [1] Koay CG, Ozarslan E and Pierpaoli C.
    "Probabilistic Identification and Estimation of Noise (PIESNO):
    A self-consistent approach and its applications in MRI."
    Journal of Magnetic Resonance 2009; 199: 94-103.

    .. [2] Koay CG, Ozarslan E and Basser PJ.
    "A signal transformational framework for breaking the noise floor
    and its applications in MRI."
    Journal of Magnetic Resonance 2009; 197: 108-119.
    """

    # This method works on a 2D array with repetitions as the third dimension,
    # so process the dataset slice by slice.
    if data.ndim < 3:
        e_s = "This function only works on datasets of at least 3 dimensions."
        raise ValueError(e_s)

    if N in opt_quantile:
        q = opt_quantile[N]
    else:
        q = 0.5

    # Initial estimation of sigma
    initial_estimation = np.percentile(data, q * 100) / np.sqrt(2 * _inv_nchi_cdf(N, 1, q))

    if data.ndim == 4:

        sigma = np.zeros(data.shape[-2], dtype=np.float32)
        mask_noise = np.zeros(data.shape[:-1], dtype=np.bool)

        for idx in range(data.shape[-2]):
            sigma[idx], mask_noise[..., idx] = _piesno_3D(data[..., idx, :], N,
                                                          alpha=alpha,
                                                          l=l,
                                                          itermax=itermax,
                                                          eps=eps,
                                                          return_mask=True,
                                                          initial_estimation=initial_estimation)

    else:
        sigma, mask_noise = _piesno_3D(data, N,
                                       alpha=alpha,
                                       l=l,
                                       itermax=itermax,
                                       eps=eps,
                                       return_mask=True,
                                       initial_estimation=initial_estimation)

    if return_mask:
        return sigma, mask_noise

    return sigma


def _piesno_3D(data, N, alpha=0.01, l=100, itermax=100, eps=1e-5,
               return_mask=False, initial_estimation=None):
    """
    Probabilistic Identification and Estimation of Noise (PIESNO).
    This is the slice by slice version for working on a 4D array.

    Parameters
    -----------
    data : ndarray
        The magnitude signals to analyse. The last dimension must contain the
        same realisation of the volume, such as dMRI or fMRI data.

    N : int
        The number of phase array coils of the MRI scanner.

    alpha : float (optional)
        Probabilistic estimation threshold for the gamma function.
        Default: 0.01.

    l : int (optional)
        number of initial estimates for sigma to try. Default: 100.

    itermax : int (optional)
        Maximum number of iterations to execute if convergence
        is not reached. Default: 100.

    eps : float (optional)
        Tolerance for the convergence criterion. Convergence is
        reached if two subsequent estimates are smaller than eps.
        Default: 1e-5.

    return_mask : bool (optional)
        If True, return a mask identyfing all the pure noise voxel
        that were found. Default: False.

    initial_estimation : float (optional)
        Upper bound for the initial estimation of sigma. default : None,
        which computes the optimal quantile for N.

    Returns
    --------
    sigma : float
        The estimated standard deviation of the gaussian noise.

    mask : ndarray
        A boolean mask indicating the voxels identified as pure noise.

    Notes
    ------
    This function assumes two things : 1. The data has a noisy, non-masked
    background and 2. The data is a repetition of the same measurements
    along the last axis, i.e. dMRI or fMRI data, not structural data like T1/T2.

    References
    ------------

    .. [1] Koay CG, Ozarslan E and Pierpaoli C.
    "Probabilistic Identification and Estimation of Noise (PIESNO):
    A self-consistent approach and its applications in MRI."
    Journal of Magnetic Resonance 2009; 199: 94-103.

    .. [2] Koay CG, Ozarslan E and Basser PJ.
    "A signal transformational framework for breaking the noise floor
    and its applications in MRI."
    Journal of Magnetic Resonance 2009; 197: 108-119.
    """

    if N in opt_quantile:
        q = opt_quantile[N]
    else:
        q = 0.5

    denom = np.sqrt(2 * _inv_nchi_cdf(N, 1, q))

    if initial_estimation is None:
        m = np.percentile(data, q * 100) / denom
    else:
        m = initial_estimation

    phi = np.arange(1, l + 1) * m / l
    K = data.shape[-1]
    sum_m2 = np.sum(data**2, axis=-1, dtype=np.float32)

    sigma = np.zeros(phi.shape, dtype=phi.dtype)
    mask = np.zeros(phi.shape + data.shape[:-1])

    lambda_minus = _inv_nchi_cdf(N, K, alpha/2)
    lambda_plus = _inv_nchi_cdf(N, K, 1 - alpha/2)

    pos = 0
    max_length_omega = 0

    for num, sig in enumerate(phi):

        sig_prev = 0
        omega_size = 1
        idx = np.zeros(sum_m2.shape, dtype=np.bool)

        for n in range(itermax):

            if np.abs(sig - sig_prev) < eps:
                break

            s = sum_m2 / (2 * K * sig**2)
            idx = np.logical_and(lambda_minus <= s, s <= lambda_plus)
            omega = data[idx, :]

            # If no point meets the criterion, exit
            if omega.size == 0:
                omega_size = 0
                break

            sig_prev = sig

            # Numpy percentile must range in 0 to 100, hence q*100
            sig = np.percentile(omega, q * 100) / denom
            omega_size = omega.size / K

        # Remember the biggest omega array as giving the optimal
        # sigma amongst all initial estimates from phi
        if omega_size > max_length_omega:
            pos, max_length_omega = num, omega_size

        sigma[num] = sig
        mask[num] = idx

    if return_mask:
        return sigma[pos], mask[pos]

    return sigma[pos]


def estimate_sigma(arr, disable_background_masking=False, N=0):
    """Standard deviation estimation from local patches

    Parameters
    ----------
    arr : 3D or 4D ndarray
        The array to be estimated

    disable_background_masking : bool, default False
        If True, uses all voxels for the estimation, otherwise, only non-zeros
        voxels are used. Useful if the background is masked by the scanner.

    N : int, default 0
        Number of coils of the receiver array. Use N = 1 in case of a SENSE
        reconstruction (Philips scanners) or the number of coils for a GRAPPA
        reconstruction (Siemens and GE). Use 0 to disable the correction factor,
        as for example if the noise is Gaussian distributed. See [1] for more information.

    Returns
    -------
    sigma : ndarray
        standard deviation of the noise, one estimation per volume.

    Note
    -------
    This function is the same as manually taking the standard deviation of the
    background and gives one value for the whole 3D array.
    It also includes the coil-dependent correction factor of Koay 2006
    (see [1]_, equation 18) with theta = 0.
    Since this function was introduced in [2]_ for T1 imaging,
    it is expected to perform ok on diffusion MRI data, but might oversmooth
    some regions and leave others un-denoised for spatially varying noise profiles.
    Consider using :func:`piesno` to estimate sigma instead if visual inacuracies
    are apparent in the denoised result.

    Reference
    -------
    .. [1] Koay, C. G., & Basser, P. J. (2006). Analytically exact correction
    scheme for signal extraction from noisy magnitude MR signals.
    Journal of Magnetic Resonance), 179(2), 317-22.

    .. [2] Coupe, P., Yger, P., Prima, S., Hellier, P., Kervrann, C., Barillot, C., 2008.
    An optimized blockwise nonlocal means denoising filter for 3-D magnetic
    resonance images, IEEE Trans. Med. Imaging 27, 425-41.
    """
    k = np.zeros((3, 3, 3), dtype=np.int8)

    k[0, 1, 1] = 1
    k[2, 1, 1] = 1
    k[1, 0, 1] = 1
    k[1, 2, 1] = 1
    k[1, 1, 0] = 1
    k[1, 1, 2] = 1

    # Precomputed factor from Koay 2006, this corrects the bias of magnitude image
    correction_factor = {0: 1, # No correction
                         1: 0.42920367320510366,
                         4: 0.4834941393603609,
                         6: 0.4891759468548269,
                         8: 0.49195420135894175,
                        12: 0.4946862482541263,
                        16: 0.4960339908122364,
                        20: 0.4968365823718557,
                        24: 0.49736907650825657,
                        32: 0.49803177052530145,
                        64: 0.49901964176235936}

    if N in correction_factor:
        factor = correction_factor[N]
    else:
        raise ValueError("N = {0} is not supported! Please choose amongst \
{1}".format(N, sorted(list(correction_factor.keys()))))

    if arr.ndim == 3:
        sigma = np.zeros(1, dtype=np.float32)
        arr = arr[..., None]
    elif arr.ndim == 4:
        sigma = np.zeros(arr.shape[-1], dtype=np.float32)
    else:
        raise ValueError("Array shape is not supported!", arr.shape)

    if disable_background_masking:
        mask = arr[..., 0].astype(np.bool)
    else:
        mask = np.ones_like(arr[..., 0], dtype=np.bool)

    conv_out = np.zeros(arr[..., 0].shape, dtype=np.float64)

    for i in range(sigma.size):
        convolve(arr[..., i], k, output=conv_out)
        mean_block = np.sqrt(6/7) * (arr[..., i] - 1/6 * conv_out)
        sigma[i] = np.sqrt(np.mean(mean_block[mask]**2) / factor)

    return sigma