This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/reconst/dsi.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
import numpy as np
from scipy.ndimage import map_coordinates
from scipy.fftpack import fftn, fftshift, ifftshift
from dipy.reconst.odf import OdfModel, OdfFit
from dipy.reconst.cache import Cache
from dipy.reconst.multi_voxel import multi_voxel_fit


class DiffusionSpectrumModel(OdfModel, Cache):

    def __init__(self,
                 gtab,
                 qgrid_size=17,
                 r_start=2.1,
                 r_end=6.,
                 r_step=0.2,
                 filter_width=32,
                 normalize_peaks=False):
        r""" Diffusion Spectrum Imaging

        The theoretical idea underlying this method is that the diffusion
        propagator $P(\mathbf{r})$ (probability density function of the average
        spin displacements) can be estimated by applying 3D FFT to the signal
        values $S(\mathbf{q})$

        ..math::
            :nowrap:
                \begin{eqnarray}
                    P(\mathbf{r}) & = & S_{0}^{-1}\int S(\mathbf{q})\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{r}
                \end{eqnarray}

        where $\mathbf{r}$ is the displacement vector and $\mathbf{q}$ is the
        wavector which corresponds to different gradient directions. Method
        used to calculate the ODFs. Here we implement the method proposed by
        Wedeen et. al [1]_.

        The main assumption for this model is fast gradient switching and that
        the acquisition gradients will sit on a keyhole Cartesian grid in
        q_space [3]_.

        Parameters
        ----------
        gtab : GradientTable,
            Gradient directions and bvalues container class
        qgrid_size : int,
            has to be an odd number. Sets the size of the q_space grid.
            For example if qgrid_size is 17 then the shape of the grid will be
            ``(17, 17, 17)``.
        r_start : float,
            ODF is sampled radially in the PDF. This parameters shows where the
            sampling should start.
        r_end : float,
            Radial endpoint of ODF sampling
        r_step : float,
            Step size of the ODf sampling from r_start to r_end
        filter_width : float,
            Strength of the hanning filter

        References
        ----------
        .. [1]  Wedeen V.J et. al, "Mapping Complex Tissue Architecture With
        Diffusion Spectrum Magnetic Resonance Imaging", MRM 2005.

        .. [2] Canales-Rodriguez E.J et. al, "Deconvolution in Diffusion
        Spectrum Imaging", Neuroimage, 2010.

        .. [3] Garyfallidis E, "Towards an accurate brain tractography", PhD
        thesis, University of Cambridge, 2012.

        Examples
        --------
        In this example where we provide the data, a gradient table
        and a reconstruction sphere, we calculate generalized FA for the first
        voxel in the data with the reconstruction performed using DSI.

        >>> from dipy.data import dsi_voxels, get_sphere
        >>> data, gtab = dsi_voxels()
        >>> sphere = get_sphere('symmetric724')
        >>> from dipy.reconst.dsi import DiffusionSpectrumModel
        >>> ds = DiffusionSpectrumModel(gtab)
        >>> dsfit = ds.fit(data)
        >>> from dipy.reconst.odf import gfa
        >>> np.round(gfa(dsfit.odf(sphere))[0, 0, 0], 2)
        0.11

        Notes
        ------
        A. Have in mind that DSI expects gradients on both hemispheres. If your
        gradients span only one hemisphere you need to duplicate the data and
        project them to the other hemisphere before calling this class. The
        function dipy.reconst.dsi.half_to_full_qspace can be used for this
        purpose.

        B. If you increase the size of the grid (parameter qgrid_size) you will
        most likely also need to update the r_* parameters. This is because
        the added zero padding from the increase of gqrid_size also introduces
        a scaling of the PDF.

        C. We assume that data only one b0 volume is provided.

        See Also
        --------
        dipy.reconst.gqi.GeneralizedQSampling

        """

        self.bvals = gtab.bvals
        self.bvecs = gtab.bvecs
        self.normalize_peaks = normalize_peaks
        # 3d volume for Sq
        if qgrid_size % 2 == 0:
            raise ValueError('qgrid_size needs to be an odd integer')
        self.qgrid_size = qgrid_size
        # necessary shifting for centering
        self.origin = self.qgrid_size // 2

        # hanning filter width
        self.filter = hanning_filter(gtab, filter_width, self.origin)
        # odf sampling radius
        self.qradius = np.arange(r_start, r_end, r_step)
        self.qradiusn = len(self.qradius)
        # create qspace grid
        self.qgrid = create_qspace(gtab, self.origin)
        b0 = np.min(self.bvals)
        self.dn = (self.bvals > b0).sum()
        self.gtab = gtab

    @multi_voxel_fit
    def fit(self, data):
        return DiffusionSpectrumFit(self, data)


class DiffusionSpectrumFit(OdfFit):

    def __init__(self, model, data):
        """ Calculates PDF and ODF and other properties for a single voxel

        Parameters
        ----------
        model : object,
            DiffusionSpectrumModel
        data : 1d ndarray,
            signal values
        """
        self.model = model
        self.data = data
        self.qgrid_sz = self.model.qgrid_size
        self.dn = self.model.dn
        self._gfa = None
        self.npeaks = 5
        self._peak_values = None
        self._peak_indices = None

    def pdf(self, normalized=True):
        """ Applies the 3D FFT in the q-space grid to generate
        the diffusion propagator
        """
        values = self.data * self.model.filter
        # create the signal volume
        Sq = np.zeros((self.qgrid_sz, self.qgrid_sz, self.qgrid_sz))
        # fill q-space

        for i in range(len(values)):
            qx, qy, qz = self.model.qgrid[i]
            Sq[qx, qy, qz] += values[i]
        # apply fourier transform
        Pr = fftshift(np.real(fftn(ifftshift(Sq), 3 * (self.qgrid_sz, ))))
        # clipping negative values to 0 (ringing artefact)
        Pr = np.clip(Pr, 0, Pr.max())

        # normalize the propagator to obtain a pdf
        if normalized:
            Pr /= Pr.sum()

        return Pr

    def rtop_signal(self, filtering=True):
        """ Calculates the return to origin probability (rtop) from the signal
        rtop equals to the sum of all signal values

        Parameters
        ----------
        filtering : boolean
            default true, perform the hanning filtering

        Returns
        -------
        rtop : float
            the return to origin probability
        """

        if filtering:
            values = self.data * self.model.filter
        else:
            values = self.data

        rtop = values.sum()

        return rtop

    def rtop_pdf(self, normalized=True):
        r""" Calculates the return to origin probability from the propagator, which is
        the propagator evaluated at zero (see Descoteaux et Al. [1]_, Tuch [2]_, Wu et al. [3]_)
        rtop = P(0)

        Parameters
        ----------
        normalized : boolean
            default true, normalize the propagator by its sum in order to obtain a pdf

        Returns
        -------
        rtop : float
            the return to origin probability

        References
        ----------
        .. [1] Descoteaux M. et. al, "Multiple q-shell diffusion propagator
        imaging", Medical Image Analysis, vol 15, No. 4, p. 603-621, 2011.

        .. [2] Tuch D.S., "Diffusion MRI of Complex Tissue Structure",
         PhD Thesis, 2002.

        .. [3] Wu Y. et. al, "Computation of Diffusion Function Measures
        in q -Space Using Magnetic Resonance Hybrid Diffusion Imaging",
        IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, No. 6, p. 858-865, 2008

        """

        Pr = self.pdf(normalized=normalized)

        center = self.qgrid_sz // 2

        rtop = Pr[center, center, center]
        return rtop

    def msd_discrete(self, normalized=True):
        r""" Calculates the mean squared displacement on the discrete propagator

        ..math::
            :nowrap:
                \begin{equation}
                    MSD:{DSI}=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}\int_{-\infty}^{\infty} P(\hat{\mathbf{r}}) \cdot \hat{\mathbf{r}}^{2} \ dr_x \ dr_y \ dr_z
                \end{equation}

        where $\hat{\mathbf{r}}$ is a point in the 3D Propagator space (see Wu et. al [1]_).

        Parameters
        ----------
        normalized : boolean
            default true, normalize the propagator by its sum in order to obtain a pdf

        Returns
        -------
        msd : float
            the mean square displacement

        References
        ----------
        .. [1] Wu Y. et. al, "Hybrid diffusion imaging", NeuroImage, vol 36,
        p. 617-629, 2007.

        """

        Pr = self.pdf(normalized=normalized)

        # create the r squared 3D matrix
        gridsize = self.qgrid_sz
        center = gridsize // 2
        a = np.arange(gridsize) - center
        x = np.tile(a, (gridsize, gridsize, 1))
        y = np.tile(a.reshape(gridsize, 1), (gridsize, 1, gridsize))
        z = np.tile(a.reshape(gridsize, 1, 1), (1, gridsize, gridsize))
        r2 = x ** 2 + y ** 2 + z ** 2

        msd = np.sum(Pr * r2) / float((gridsize ** 3))
        return msd

    def odf(self, sphere):
        r""" Calculates the real discrete odf for a given discrete sphere

        ..math::
            :nowrap:
                \begin{equation}
                    \psi_{DSI}(\hat{\mathbf{u}})=\int_{0}^{\infty}P(r\hat{\mathbf{u}})r^{2}dr
                \end{equation}

        where $\hat{\mathbf{u}}$ is the unit vector which corresponds to a
        sphere point.
        """
        interp_coords = self.model.cache_get('interp_coords',
                                             key=sphere)
        if interp_coords is None:
            interp_coords = pdf_interp_coords(sphere,
                                              self.model.qradius,
                                              self.model.origin)
            self.model.cache_set('interp_coords', sphere, interp_coords)

        Pr = self.pdf()

        # calculate the orientation distribution function
        return pdf_odf(Pr, self.model.qradius, interp_coords)


def create_qspace(gtab, origin):
    """ create the 3D grid which holds the signal values (q-space)

    Parameters
    ----------
    gtab : GradientTable
    origin : (3,) ndarray
        center of qspace

    Returns
    -------
    qgrid : ndarray
        qspace coordinates
    """
    # create the q-table from bvecs and bvals
    qtable = create_qtable(gtab, origin)

    # center and index in qspace volume
    qgrid = qtable + origin
    return qgrid.astype('i8')


def create_qtable(gtab, origin):
    """ create a normalized version of gradients

    Parameters
    ----------
    gtab : GradientTable
    origin : (3,) ndarray
        center of qspace

    Returns
    -------
    qtable : ndarray
    """

    bv = gtab.bvals
    bsorted = np.sort(bv[np.bitwise_not(gtab.b0s_mask)])
    for i in range(len(bsorted)):
        bmin = bsorted[i]
        try:
            if np.sqrt(bv.max() / bmin) > origin + 1:
                continue
            else:
                break
        except ZeroDivisionError:
            continue

    bv = np.sqrt(bv / bmin)
    qtable = np.vstack((bv, bv, bv)).T * gtab.bvecs
    return np.floor(qtable + .5)


def hanning_filter(gtab, filter_width, origin):
    """ create a hanning window

    The signal is premultiplied by a Hanning window before
    Fourier transform in order to ensure a smooth attenuation
    of the signal at high q values.

    Parameters
    ----------
    gtab : GradientTable
    filter_width : int
    origin : (3,) ndarray
        center of qspace

    Returns
    -------
    filter : (N,) ndarray
        where N is the number of non-b0 gradient directions

    """
    qtable = create_qtable(gtab, origin)
    # calculate r - hanning filter free parameter
    r = np.sqrt(qtable[:, 0] ** 2 + qtable[:, 1] ** 2 + qtable[:, 2] ** 2)
    # setting hanning filter width and hanning
    return .5 * np.cos(2 * np.pi * r / filter_width)


def pdf_interp_coords(sphere, rradius, origin):
    """ Precompute coordinates for ODF calculation from the PDF

    Parameters
    ----------
    sphere : object,
            Sphere
    rradius : array, shape (N,)
            line interpolation points
    origin : array, shape (3,)
            center of the grid

    """
    interp_coords = rradius * sphere.vertices[np.newaxis].T
    origin = np.reshape(origin, [-1, 1, 1])
    interp_coords = origin + interp_coords
    return interp_coords


def pdf_odf(Pr, rradius, interp_coords):
    r""" Calculates the real ODF from the diffusion propagator(PDF) Pr

    Parameters
    ----------
    Pr : array, shape (X, X, X)
        probability density function
    rradius : array, shape (N,)
        interpolation range on the radius
    interp_coords : array, shape (3, M, N)
        coordinates in the pdf for interpolating the odf
    """
    PrIs = map_coordinates(Pr, interp_coords, order=1)
    odf = (PrIs * rradius ** 2).sum(-1)
    return odf


def half_to_full_qspace(data, gtab):
    """ Half to full Cartesian grid mapping

    Useful when dMRI data are provided in one qspace hemisphere as
    DiffusionSpectrum expects data to be in full qspace.

    Parameters
    ----------
    data : array, shape (X, Y, Z, W)
        where (X, Y, Z) volume size and W number of gradient directions
    gtab : GradientTable
        container for b-values and b-vectors (gradient directions)

    Returns
    -------
    new_data : array, shape (X, Y, Z, 2 * W -1)
    new_gtab : GradientTable

    Notes
    -----
    We assume here that only on b0 is provided with the initial data. If that
    is not the case then you will need to write your own preparation function
    before providing the gradients and the data to the DiffusionSpectrumModel
    class.
    """
    bvals = gtab.bvals
    bvecs = gtab.bvecs
    bvals = np.append(bvals, bvals[1:])
    bvecs = np.append(bvecs, - bvecs[1:], axis=0)
    data = np.append(data, data[..., 1:], axis=-1)
    gtab.bvals = bvals.copy()
    gtab.bvecs = bvecs.copy()
    return data, gtab


def project_hemisph_bvecs(gtab):
    """ Project any near identical bvecs to the other hemisphere

    Parameters
    ----------
    gtab : object,
            GradientTable

    Notes
    -------
    Useful only when working with some types of dsi data.
    """
    bvals = gtab.bvals
    bvecs = gtab.bvecs
    bvs = bvals[1:]
    bvcs = bvecs[1:]
    b = bvs[:, None] * bvcs
    bb = np.zeros((len(bvs), len(bvs)))
    pairs = []
    for (i, vec) in enumerate(b):
        for (j, vec2) in enumerate(b):
            bb[i, j] = np.sqrt(np.sum((vec - vec2) ** 2))
        I = np.argsort(bb[i])
        for j in I:
            if j != i:
                break
        if (j, i) in pairs:
            pass
        else:
            pairs.append((i, j))
    bvecs2 = bvecs.copy()
    for (i, j) in pairs:
        bvecs2[1 + j] = - bvecs2[1 + j]
    return bvecs2, pairs


class DiffusionSpectrumDeconvModel(DiffusionSpectrumModel):

    def __init__(self, gtab, qgrid_size=35, r_start=4.1, r_end=13.,
                 r_step=0.4, filter_width=np.inf, normalize_peaks=False):
        r""" Diffusion Spectrum Deconvolution

        The idea is to remove the convolution on the DSI propagator that is
        caused by the truncation of the q-space in the DSI sampling.

        ..math::
            :nowrap:
                \begin{eqnarray*}
                    P_{dsi}(\mathbf{r}) & = & S_{0}^{-1}\iiint\limits_{\| \mathbf{q} \| \le \mathbf{q_{max}}} S(\mathbf{q})\exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \\
                    & = & S_{0}^{-1}\iiint\limits_{\mathbf{q}} \left( S(\mathbf{q}) \cdot M(\mathbf{q}) \right) \exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \\
                    & = & P(\mathbf{r}) \otimes \left( S_{0}^{-1}\iiint\limits_{\mathbf{q}}  M(\mathbf{q}) \exp(-i2\pi\mathbf{q}\cdot\mathbf{r})d\mathbf{q} \right) \\
                \end{eqnarray*}

        where $\mathbf{r}$ is the displacement vector and $\mathbf{q}$ is the
        wavector which corresponds to different gradient directions,
        $M(\mathbf{q})$ is a mask corresponding to your q-space sampling and
        $\otimes$ is the convolution operator [1]_.


        Parameters
        ----------
        gtab : GradientTable,
            Gradient directions and bvalues container class
        qgrid_size : int,
            has to be an odd number. Sets the size of the q_space grid.
            For example if qgrid_size is 35 then the shape of the grid will be
            ``(35, 35, 35)``.
        r_start : float,
            ODF is sampled radially in the PDF. This parameters shows where the
            sampling should start.
        r_end : float,
            Radial endpoint of ODF sampling
        r_step : float,
            Step size of the ODf sampling from r_start to r_end
        filter_width : float,
            Strength of the hanning filter

        References
        ----------
        .. [1] Canales-Rodriguez E.J et. al, "Deconvolution in Diffusion
        Spectrum Imaging", Neuroimage, 2010.

        .. [2] Biggs David S.C. et. al, "Acceleration of Iterative Image
        Restoration Algorithms", Applied Optics, vol. 36, No. 8, p. 1766-1775,
        1997.

        """
        DiffusionSpectrumModel.__init__(self, gtab, qgrid_size,
                                        r_start, r_end, r_step,
                                        filter_width,
                                        normalize_peaks)

    @multi_voxel_fit
    def fit(self, data):
        return DiffusionSpectrumDeconvFit(self, data)


class DiffusionSpectrumDeconvFit(DiffusionSpectrumFit):

    def pdf(self):
        """ Applies the 3D FFT in the q-space grid to generate
        the DSI diffusion propagator, remove the background noise with a
        hard threshold and then deconvolve the propagator with the
        Lucy-Richardson deconvolution algorithm
        """
        values = self.data
        # create the signal volume
        Sq = np.zeros((self.qgrid_sz, self.qgrid_sz, self.qgrid_sz))
        # fill q-space
        for i in range(len(values)):
            qx, qy, qz = self.model.qgrid[i]
            Sq[qx, qy, qz] += values[i]
        # get deconvolution PSF
        DSID_PSF = self.model.cache_get('deconv_psf', key=self.model.gtab)
        if DSID_PSF is None:
            DSID_PSF = gen_PSF(self.model.qgrid, self.qgrid_sz,
                               self.qgrid_sz, self.qgrid_sz)
        self.model.cache_set('deconv_psf', self.model.gtab, DSID_PSF)
        # apply fourier transform
        Pr = fftshift(np.abs(np.real(fftn(ifftshift(Sq),
                      3 * (self.qgrid_sz, )))))
        # threshold propagator
        Pr = threshold_propagator(Pr)
        # apply LR deconvolution
        Pr = LR_deconv(Pr, DSID_PSF, 5, 2)
        return Pr


def threshold_propagator(P, estimated_snr=15.):
    """
    Applies hard threshold on the propagator to remove background noise for the
    deconvolution.
    """
    P_thresholded = P.copy()
    threshold = P_thresholded.max() / float(estimated_snr)
    P_thresholded[P_thresholded < threshold] = 0
    return P_thresholded / P_thresholded.sum()


def gen_PSF(qgrid_sampling, siz_x, siz_y, siz_z):
    """
    Generate a PSF for DSI Deconvolution by taking the ifft of the binary
    q-space sampling mask and truncating it to keep only the center.
    """
    Sq = np.zeros((siz_x, siz_y, siz_z))
    # fill q-space
    for i in range(qgrid_sampling.shape[0]):
        qx, qy, qz = qgrid_sampling[i]
        Sq[qx, qy, qz] = 1
    return Sq * np.real(np.fft.fftshift(np.fft.ifftn(np.fft.ifftshift(Sq))))


def LR_deconv(prop, psf, numit=5, acc_factor=1):
    r"""
    Perform Lucy-Richardson deconvolution algorithm on a 3D array.

    Parameters
    ----------
    prop : 3-D ndarray of dtype float
        The 3D volume to be deconvolve
    psf : 3-D ndarray of dtype float
        The filter that will be used for the deconvolution.
    numit : int
        Number of Lucy-Richardson iteration to perform.
    acc_factor : float
        Exponential acceleration factor as in [1]_.

    References
    ----------
    .. [1] Biggs David S.C. et. al, "Acceleration of Iterative Image
       Restoration Algorithms", Applied Optics, vol. 36, No. 8, p. 1766-1775,
       1997.

    """

    eps = 1e-16
    # Create the otf of the same size as prop
    otf = np.zeros_like(prop)
    # prop.ndim==3
    otf[otf.shape[0] // 2 - psf.shape[0] // 2:otf.shape[0] // 2 +
        psf.shape[0] // 2 + 1, otf.shape[1] // 2 - psf.shape[1] // 2:
        otf.shape[1] // 2 + psf.shape[1] // 2 + 1, otf.shape[2] // 2 -
        psf.shape[2] // 2:otf.shape[2] // 2 + psf.shape[2] // 2 + 1] = psf
    otf = np.real(np.fft.fftn(np.fft.ifftshift(otf)))
    # Enforce Positivity
    prop = np.clip(prop, 0, np.inf)
    prop_deconv = prop.copy()
    for it in range(numit):
        # Blur the estimate
        reBlurred = np.real(np.fft.ifftn(otf * np.fft.fftn(prop_deconv)))
        reBlurred[reBlurred < eps] = eps
        # Update the estimate
        prop_deconv = prop_deconv * (np.real(np.fft.ifftn(otf *
                                                          np.fft.fftn((prop / reBlurred) + eps)))) ** acc_factor
        # Enforce positivity
        prop_deconv = np.clip(prop_deconv, 0, np.inf)
    return prop_deconv / prop_deconv.sum()


if __name__ == '__main__':
    pass