This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/reconst/shm.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

   1
   2
   3
   4
   5
   6
   7
   8
   9
  10
  11
  12
  13
  14
  15
  16
  17
  18
  19
  20
  21
  22
  23
  24
  25
  26
  27
  28
  29
  30
  31
  32
  33
  34
  35
  36
  37
  38
  39
  40
  41
  42
  43
  44
  45
  46
  47
  48
  49
  50
  51
  52
  53
  54
  55
  56
  57
  58
  59
  60
  61
  62
  63
  64
  65
  66
  67
  68
  69
  70
  71
  72
  73
  74
  75
  76
  77
  78
  79
  80
  81
  82
  83
  84
  85
  86
  87
  88
  89
  90
  91
  92
  93
  94
  95
  96
  97
  98
  99
 100
 101
 102
 103
 104
 105
 106
 107
 108
 109
 110
 111
 112
 113
 114
 115
 116
 117
 118
 119
 120
 121
 122
 123
 124
 125
 126
 127
 128
 129
 130
 131
 132
 133
 134
 135
 136
 137
 138
 139
 140
 141
 142
 143
 144
 145
 146
 147
 148
 149
 150
 151
 152
 153
 154
 155
 156
 157
 158
 159
 160
 161
 162
 163
 164
 165
 166
 167
 168
 169
 170
 171
 172
 173
 174
 175
 176
 177
 178
 179
 180
 181
 182
 183
 184
 185
 186
 187
 188
 189
 190
 191
 192
 193
 194
 195
 196
 197
 198
 199
 200
 201
 202
 203
 204
 205
 206
 207
 208
 209
 210
 211
 212
 213
 214
 215
 216
 217
 218
 219
 220
 221
 222
 223
 224
 225
 226
 227
 228
 229
 230
 231
 232
 233
 234
 235
 236
 237
 238
 239
 240
 241
 242
 243
 244
 245
 246
 247
 248
 249
 250
 251
 252
 253
 254
 255
 256
 257
 258
 259
 260
 261
 262
 263
 264
 265
 266
 267
 268
 269
 270
 271
 272
 273
 274
 275
 276
 277
 278
 279
 280
 281
 282
 283
 284
 285
 286
 287
 288
 289
 290
 291
 292
 293
 294
 295
 296
 297
 298
 299
 300
 301
 302
 303
 304
 305
 306
 307
 308
 309
 310
 311
 312
 313
 314
 315
 316
 317
 318
 319
 320
 321
 322
 323
 324
 325
 326
 327
 328
 329
 330
 331
 332
 333
 334
 335
 336
 337
 338
 339
 340
 341
 342
 343
 344
 345
 346
 347
 348
 349
 350
 351
 352
 353
 354
 355
 356
 357
 358
 359
 360
 361
 362
 363
 364
 365
 366
 367
 368
 369
 370
 371
 372
 373
 374
 375
 376
 377
 378
 379
 380
 381
 382
 383
 384
 385
 386
 387
 388
 389
 390
 391
 392
 393
 394
 395
 396
 397
 398
 399
 400
 401
 402
 403
 404
 405
 406
 407
 408
 409
 410
 411
 412
 413
 414
 415
 416
 417
 418
 419
 420
 421
 422
 423
 424
 425
 426
 427
 428
 429
 430
 431
 432
 433
 434
 435
 436
 437
 438
 439
 440
 441
 442
 443
 444
 445
 446
 447
 448
 449
 450
 451
 452
 453
 454
 455
 456
 457
 458
 459
 460
 461
 462
 463
 464
 465
 466
 467
 468
 469
 470
 471
 472
 473
 474
 475
 476
 477
 478
 479
 480
 481
 482
 483
 484
 485
 486
 487
 488
 489
 490
 491
 492
 493
 494
 495
 496
 497
 498
 499
 500
 501
 502
 503
 504
 505
 506
 507
 508
 509
 510
 511
 512
 513
 514
 515
 516
 517
 518
 519
 520
 521
 522
 523
 524
 525
 526
 527
 528
 529
 530
 531
 532
 533
 534
 535
 536
 537
 538
 539
 540
 541
 542
 543
 544
 545
 546
 547
 548
 549
 550
 551
 552
 553
 554
 555
 556
 557
 558
 559
 560
 561
 562
 563
 564
 565
 566
 567
 568
 569
 570
 571
 572
 573
 574
 575
 576
 577
 578
 579
 580
 581
 582
 583
 584
 585
 586
 587
 588
 589
 590
 591
 592
 593
 594
 595
 596
 597
 598
 599
 600
 601
 602
 603
 604
 605
 606
 607
 608
 609
 610
 611
 612
 613
 614
 615
 616
 617
 618
 619
 620
 621
 622
 623
 624
 625
 626
 627
 628
 629
 630
 631
 632
 633
 634
 635
 636
 637
 638
 639
 640
 641
 642
 643
 644
 645
 646
 647
 648
 649
 650
 651
 652
 653
 654
 655
 656
 657
 658
 659
 660
 661
 662
 663
 664
 665
 666
 667
 668
 669
 670
 671
 672
 673
 674
 675
 676
 677
 678
 679
 680
 681
 682
 683
 684
 685
 686
 687
 688
 689
 690
 691
 692
 693
 694
 695
 696
 697
 698
 699
 700
 701
 702
 703
 704
 705
 706
 707
 708
 709
 710
 711
 712
 713
 714
 715
 716
 717
 718
 719
 720
 721
 722
 723
 724
 725
 726
 727
 728
 729
 730
 731
 732
 733
 734
 735
 736
 737
 738
 739
 740
 741
 742
 743
 744
 745
 746
 747
 748
 749
 750
 751
 752
 753
 754
 755
 756
 757
 758
 759
 760
 761
 762
 763
 764
 765
 766
 767
 768
 769
 770
 771
 772
 773
 774
 775
 776
 777
 778
 779
 780
 781
 782
 783
 784
 785
 786
 787
 788
 789
 790
 791
 792
 793
 794
 795
 796
 797
 798
 799
 800
 801
 802
 803
 804
 805
 806
 807
 808
 809
 810
 811
 812
 813
 814
 815
 816
 817
 818
 819
 820
 821
 822
 823
 824
 825
 826
 827
 828
 829
 830
 831
 832
 833
 834
 835
 836
 837
 838
 839
 840
 841
 842
 843
 844
 845
 846
 847
 848
 849
 850
 851
 852
 853
 854
 855
 856
 857
 858
 859
 860
 861
 862
 863
 864
 865
 866
 867
 868
 869
 870
 871
 872
 873
 874
 875
 876
 877
 878
 879
 880
 881
 882
 883
 884
 885
 886
 887
 888
 889
 890
 891
 892
 893
 894
 895
 896
 897
 898
 899
 900
 901
 902
 903
 904
 905
 906
 907
 908
 909
 910
 911
 912
 913
 914
 915
 916
 917
 918
 919
 920
 921
 922
 923
 924
 925
 926
 927
 928
 929
 930
 931
 932
 933
 934
 935
 936
 937
 938
 939
 940
 941
 942
 943
 944
 945
 946
 947
 948
 949
 950
 951
 952
 953
 954
 955
 956
 957
 958
 959
 960
 961
 962
 963
 964
 965
 966
 967
 968
 969
 970
 971
 972
 973
 974
 975
 976
 977
 978
 979
 980
 981
 982
 983
 984
 985
 986
 987
 988
 989
 990
 991
 992
 993
 994
 995
 996
 997
 998
 999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
""" Tools for using spherical harmonic models to fit diffusion data

References
----------
Aganj, I., et. al. 2009. ODF Reconstruction in Q-Ball Imaging With Solid
    Angle Consideration.
Descoteaux, M., et. al. 2007. Regularized, fast, and robust analytical
    Q-ball imaging.
Tristan-Vega, A., et. al. 2010. A new methodology for estimation of fiber
    populations in white matter of the brain with Funk-Radon transform.
Tristan-Vega, A., et. al. 2009. Estimation of fiber orientation probability
    density functions in high angular resolution diffusion imaging.


Note about the Transpose:
In the literature the matrix representation of these methods is often written
as Y = Bx where B is some design matrix and Y and x are column vectors. In our
case the input data, a dwi stored as a nifti file for example, is stored as row
vectors (ndarrays) of the form (x, y, z, n), where n is the number of diffusion
directions. We could transpose and reshape the data to be (n, x*y*z), so that
we could directly plug it into the above equation. However, I have chosen to
keep the data as is and implement the relevant equations rewritten in the
following form: Y.T = x.T B.T, or in python syntax data = np.dot(sh_coef, B.T)
where data is Y.T and sh_coef is x.T.
"""

import numpy as np
from numpy import concatenate, diag, diff, empty, eye, sqrt, unique, dot
from numpy.linalg import pinv, svd
from numpy.random import randint

from dipy.reconst.odf import OdfModel, OdfFit
from dipy.core.geometry import cart2sphere
from dipy.core.onetime import auto_attr
from dipy.reconst.cache import Cache

from distutils.version import LooseVersion
import scipy
from scipy.special import lpn, lpmv, gammaln

if LooseVersion(scipy.version.short_version) >= LooseVersion('0.15.0'):
    SCIPY_15_PLUS = True
    import scipy.special as sps
else:
    SCIPY_15_PLUS = False


def _copydoc(obj):
    def bandit(f):
        f.__doc__ = obj.__doc__
        return f
    return bandit


def forward_sdeconv_mat(r_rh, n):
    """ Build forward spherical deconvolution matrix

    Parameters
    ----------
    r_rh : ndarray
        Rotational harmonics coefficients for the single fiber response
        function. Each element `rh[i]` is associated with spherical harmonics
        of degree `2*i`.
    n : ndarray
        The degree of spherical harmonic function associated with each row of
        the deconvolution matrix. Only even degrees are allowed

    Returns
    -------
    R : ndarray (N, N)
        Deconvolution matrix with shape (N, N)

    """

    if np.any(n % 2):
        raise ValueError("n has odd degrees, expecting only even degrees")
    return np.diag(r_rh[n // 2])


def sh_to_rh(r_sh, m, n):
    """ Spherical harmonics (SH) to rotational harmonics (RH)

    Calculate the rotational harmonic decomposition up to
    harmonic order `m`, degree `n` for an axially and antipodally
    symmetric function. Note that all ``m != 0`` coefficients
    will be ignored as axial symmetry is assumed. Hence, there
    will be ``(sh_order/2 + 1)`` non-zero coefficients.

    Parameters
    ----------
    r_sh : ndarray (N,)
        ndarray of SH coefficients for the single fiber response function.
        These coefficients must correspond to the real spherical harmonic
        functions produced by `shm.real_sph_harm`.
    m : ndarray (N,)
        The order of the spherical harmonic function associated with each
        coefficient.
    n : ndarray (N,)
        The degree of the spherical harmonic function associated with each
        coefficient.

    Returns
    -------
    r_rh : ndarray (``(sh_order + 1)*(sh_order + 2)/2``,)
        Rotational harmonics coefficients representing the input `r_sh`

    See Also
    --------
    shm.real_sph_harm, shm.real_sym_sh_basis

    References
    ----------
    .. [1] Tournier, J.D., et al. NeuroImage 2007. Robust determination of the
        fibre orientation distribution in diffusion MRI: Non-negativity
        constrained super-resolved spherical deconvolution

    """
    mask = m == 0
    # The delta function at theta = phi = 0 is known to have zero coefficients
    # where m != 0, therefore we need only compute the coefficients at m=0.
    dirac_sh = gen_dirac(0, n[mask], 0, 0.)
    r_rh = r_sh[mask] / dirac_sh
    return r_rh


def gen_dirac(m, n, theta, phi):
    """ Generate Dirac delta function orientated in (theta, phi) on the sphere

    The spherical harmonics (SH) representation of this Dirac is returned as
    coefficients to spherical harmonic functions produced by
    `shm.real_sph_harm`.

    Parameters
    ----------
    m : ndarray (N,)
        The order of the spherical harmonic function associated with each
        coefficient.
    n : ndarray (N,)
        The degree of the spherical harmonic function associated with each
        coefficient.
    theta : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate.
    phi : float [0, pi]
        The polar (colatitudinal) coordinate.

    See Also
    --------
    shm.real_sph_harm, shm.real_sym_sh_basis

    Returns
    -------
    dirac : ndarray
        SH coefficients representing the Dirac function. The shape of this is
        `(m + 2) * (m + 1) / 2`.

    """
    return real_sph_harm(m, n, theta, phi)


def spherical_harmonics(m, n, theta, phi):
    x = np.cos(phi)
    val = lpmv(m, n, x).astype(complex)
    val *= np.sqrt((2 * n + 1) / 4.0 / np.pi)
    val *= np.exp(0.5 * (gammaln(n - m + 1) - gammaln(n + m + 1)))
    val = val * np.exp(1j * m * theta)
    return val

if SCIPY_15_PLUS:
    def spherical_harmonics(m, n, theta, phi):
        return sps.sph_harm(m, n, theta, phi, dtype=complex)

spherical_harmonics.__doc__ = r""" Compute spherical harmonics

    This may take scalar or array arguments. The inputs will be broadcasted
    against each other.

    Parameters
    ----------
    m : int ``|m| <= n``
        The order of the harmonic.
    n : int ``>= 0``
        The degree of the harmonic.
    theta : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate.
    phi : float [0, pi]
        The polar (colatitudinal) coordinate.

    Returns
    -------
    y_mn : complex float
        The harmonic $Y^m_n$ sampled at `theta` and `phi`.

    Notes
    -----
    This is a faster implementation of scipy.special.sph_harm for
    scipy version < 0.15.0. For scipy 0.15 and onwards, we use the scipy
    implementation of the function
    """


def real_sph_harm(m, n, theta, phi):
    r""" Compute real spherical harmonics.

    Where the real harmonic $Y^m_n$ is defined to be:

        Real($Y^m_n$) * sqrt(2) if m > 0
        $Y^m_n$                 if m == 0
        Imag($Y^m_n$) * sqrt(2) if m < 0

    This may take scalar or array arguments. The inputs will be broadcasted
    against each other.

    Parameters
    ----------
    m : int ``|m| <= n``
        The order of the harmonic.
    n : int ``>= 0``
        The degree of the harmonic.
    theta : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate.
    phi : float [0, pi]
        The polar (colatitudinal) coordinate.

    Returns
    --------
    y_mn : real float
        The real harmonic $Y^m_n$ sampled at `theta` and `phi`.

    See Also
    --------
    scipy.special.sph_harm
    """
    # dipy uses a convention for theta and phi that is reversed with respect to
    # function signature of scipy.special.sph_harm
    sh = spherical_harmonics(np.abs(m), n, phi, theta)

    real_sh = np.where(m > 0, sh.imag, sh.real)
    real_sh *= np.where(m == 0, 1., np.sqrt(2))
    return real_sh


def real_sym_sh_mrtrix(sh_order, theta, phi):
    """
    Compute real spherical harmonics as in mrtrix, where the real harmonic
    $Y^m_n$ is defined to be::

        Real($Y^m_n$)       if m > 0
        $Y^m_n$             if m == 0
        Imag($Y^|m|_n$)     if m < 0

    This may take scalar or array arguments. The inputs will be broadcasted
    against each other.

    Parameters
    -----------
    sh_order : int
        The maximum degree or the spherical harmonic basis.
    theta : float [0, pi]
        The polar (colatitudinal) coordinate.
    phi : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate.

    Returns
    --------
    y_mn : real float
        The real harmonic $Y^m_n$ sampled at `theta` and `phi` as
        implemented in mrtrix.  Warning: the basis is Tournier et al
        2004 and 2007 is slightly different.
    m : array
        The order of the harmonics.
    n : array
        The degree of the harmonics.

    """
    m, n = sph_harm_ind_list(sh_order)
    phi = np.reshape(phi, [-1, 1])
    theta = np.reshape(theta, [-1, 1])

    m = -m
    real_sh = real_sph_harm(m, n, theta, phi)
    real_sh /= np.where(m == 0, 1., np.sqrt(2))
    return real_sh, m, n


def real_sym_sh_basis(sh_order, theta, phi):
    """Samples a real symmetric spherical harmonic basis at point on the sphere

    Samples the basis functions up to order `sh_order` at points on the sphere
    given by `theta` and `phi`. The basis functions are defined here the same
    way as in fibernavigator [1]_ where the real harmonic $Y^m_n$ is defined to
    be:

        Imag($Y^m_n$) * sqrt(2)     if m > 0
        $Y^m_n$                     if m == 0
        Real($Y^|m|_n$) * sqrt(2)   if m < 0

    This may take scalar or array arguments. The inputs will be broadcasted
    against each other.

    Parameters
    -----------
    sh_order : int
        even int > 0, max spherical harmonic degree
    theta : float [0, 2*pi]
        The azimuthal (longitudinal) coordinate.
    phi : float [0, pi]
        The polar (colatitudinal) coordinate.

    Returns
    --------
    y_mn : real float
        The real harmonic $Y^m_n$ sampled at `theta` and `phi`
    m : array
        The order of the harmonics.
    n : array
        The degree of the harmonics.

    References
    ----------
    .. [1] http://code.google.com/p/fibernavigator/

    """
    m, n = sph_harm_ind_list(sh_order)
    phi = np.reshape(phi, [-1, 1])
    theta = np.reshape(theta, [-1, 1])

    real_sh = real_sph_harm(m, n, theta, phi)
    return real_sh, m, n


sph_harm_lookup = {None: real_sym_sh_basis,
                   "mrtrix": real_sym_sh_mrtrix,
                   "fibernav": real_sym_sh_basis}


def sph_harm_ind_list(sh_order):
    """
    Returns the degree (n) and order (m) of all the symmetric spherical
    harmonics of degree less then or equal to `sh_order`. The results, `m_list`
    and `n_list` are kx1 arrays, where k depends on sh_order. They can be
    passed to :func:`real_sph_harm`.

    Parameters
    ----------
    sh_order : int
        even int > 0, max degree to return

    Returns
    -------
    m_list : array
        orders of even spherical harmonics
    n_list : array
        degrees of even spherical harmonics

    See also
    --------
    real_sph_harm
    """
    if sh_order % 2 != 0:
        raise ValueError('sh_order must be an even integer >= 0')

    n_range = np.arange(0, sh_order + 1, 2, dtype=int)
    n_list = np.repeat(n_range, n_range * 2 + 1)

    ncoef = (sh_order + 2) * (sh_order + 1) / 2
    offset = 0
    m_list = empty(ncoef, 'int')
    for ii in n_range:
        m_list[offset:offset + 2 * ii + 1] = np.arange(-ii, ii + 1)
        offset = offset + 2 * ii + 1

    # makes the arrays ncoef by 1, allows for easy broadcasting later in code
    return (m_list, n_list)


def order_from_ncoef(ncoef):
    """
    Given a number n of coefficients, calculate back the sh_order
    """
    # Solve the quadratic equation derived from :
    # ncoef = (sh_order + 2) * (sh_order + 1) / 2
    return int(-3 + np.sqrt(9 - 4 * (2-2*ncoef)))/2


def smooth_pinv(B, L):
    """Regularized psudo-inverse

    Computes a regularized least square inverse of B

    Parameters
    ----------
    B : array_like (n, m)
        Matrix to be inverted
    L : array_like (n,)

    Returns
    -------
    inv : ndarray (m, n)
        regularized least square inverse of B

    Notes
    -----
    In the literature this inverse is often written $(B^{T}B+L^{2})^{-1}B^{T}$.
    However here this inverse is implemented using the psudo-inverse because it
    is more numerically stable than the direct implementation of the matrix
    product.

    """
    L = diag(L)
    inv = pinv(concatenate((B, L)))
    return inv[:, :len(B)]


def lazy_index(index):
    """Produces a lazy index

    Returns a slice that can be used for indexing an array, if no slice can be
    made index is returned as is.
    """
    index = np.array(index)
    assert index.ndim == 1
    if index.dtype.kind == 'b':
        index = index.nonzero()[0]
    if len(index) == 1:
        return slice(index[0], index[0] + 1)
    step = unique(diff(index))
    if len(step) != 1 or step[0] == 0:
        return index
    else:
        return slice(index[0], index[-1] + 1, step[0])


def _gfa_sh(coef, sh0_index=0):
    """The gfa of the odf, computed from the spherical harmonic coefficients

    This is a private function because it only works for coefficients of
    normalized sh bases.

    Parameters
    ----------
    coef : array
        The coefficients, using a normalized sh basis, that represent each odf.
    sh0_index : int
        The index of the coefficient associated with the 0th order sh harmonic.

    Returns
    -------
    gfa_values : array
        The gfa of each odf.

    """
    coef_sq = coef**2
    numer = coef_sq[..., sh0_index]
    denom = (coef_sq).sum(-1)
    # The sum of the square of the coefficients being zero is the same as all
    # the coefficients being zero
    allzero = denom == 0
    # By adding 1 to numer and denom where both and are 0, we prevent 0/0
    numer = numer + allzero
    denom = denom + allzero
    return np.sqrt(1. - (numer / denom))


class SphHarmModel(OdfModel, Cache):
    """To be subclassed by all models that return a SphHarmFit when fit."""

    def sampling_matrix(self, sphere):
        """The matrix needed to sample ODFs from coefficients of the model.

        Parameters
        ----------
        sphere : Sphere
            Points used to sample ODF.

        Returns
        -------
        sampling_matrix : array
            The size of the matrix will be (N, M) where N is the number of
            vertices on sphere and M is the number of coefficients needed by
            the model.
        """
        sampling_matrix = self.cache_get("sampling_matrix", sphere)
        if sampling_matrix is None:
            sh_order = self.sh_order
            theta = sphere.theta
            phi = sphere.phi
            sampling_matrix, m, n = real_sym_sh_basis(sh_order, theta, phi)
            self.cache_set("sampling_matrix", sphere, sampling_matrix)
        return sampling_matrix


class QballBaseModel(SphHarmModel):
    """To be subclassed by Qball type models."""
    def __init__(self, gtab, sh_order, smooth=0.006, min_signal=1.,
                 assume_normed=False):
        """Creates a model that can be used to fit or sample diffusion data

        Arguments
        ---------
        gtab : GradientTable
            Diffusion gradients used to acquire data
        sh_order : even int >= 0
            the spherical harmonic order of the model
        smooth : float between 0 and 1, optional
            The regularization parameter of the model
        min_signal : float, > 0, optional
            During fitting, all signal values less than `min_signal` are
            clipped to `min_signal`. This is done primarily to avoid values
            less than or equal to zero when taking logs.
        assume_normed : bool, optional
            If True, clipping and normalization of the data with respect to the
            mean B0 signal are skipped during mode fitting. This is an advanced
            feature and should be used with care.

        See Also
        --------
        normalize_data

        """
        SphHarmModel.__init__(self, gtab)
        self._where_b0s = lazy_index(gtab.b0s_mask)
        self._where_dwi = lazy_index(~gtab.b0s_mask)
        self.assume_normed = assume_normed
        self.min_signal = min_signal
        x, y, z = gtab.gradients[self._where_dwi].T
        r, theta, phi = cart2sphere(x, y, z)
        B, m, n = real_sym_sh_basis(sh_order, theta[:, None], phi[:, None])
        L = -n * (n + 1)
        legendre0 = lpn(sh_order, 0)[0]
        F = legendre0[n]
        self.sh_order = sh_order
        self.B = B
        self.m = m
        self.n = n
        self._set_fit_matrix(B, L, F, smooth)

    def _set_fit_matrix(self, *args):
        """Should be set in a subclass and is called by __init__"""
        msg = "User must implement this method in a subclass"
        raise NotImplementedError(msg)

    def fit(self, data, mask=None):
        """Fits the model to diffusion data and returns the model fit"""
        # Normalize the data and fit coefficients
        if not self.assume_normed:
            data = normalize_data(data, self._where_b0s, self.min_signal)

        # Compute coefficients using abstract method
        coef = self._get_shm_coef(data)

        # Apply the mask to the coefficients
        if mask is not None:
            mask = np.asarray(mask, dtype=bool)
            coef *= mask[..., None]
        return SphHarmFit(self, coef, mask)


class SphHarmFit(OdfFit):
    """Diffusion data fit to a spherical harmonic model"""

    def __init__(self, model, shm_coef, mask):
        self.model = model
        self._shm_coef = shm_coef
        self.mask = mask

    @property
    def shape(self):
        return self._shm_coef.shape[:-1]

    def __getitem__(self, index):
        """Allowing indexing into fit"""
        # Index shm_coefficients
        if isinstance(index, tuple):
            coef_index = index + (Ellipsis,)
        else:
            coef_index = index
        new_coef = self._shm_coef[coef_index]

        # Index mask
        if self.mask is not None:
            new_mask = self.mask[index]
            assert new_mask.shape == new_coef.shape[:-1]
        else:
            new_mask = None

        return SphHarmFit(self.model, new_coef, new_mask)

    def odf(self, sphere):
        """Samples the odf function on the points of a sphere

        Parameters
        ----------
        sphere : Sphere
            The points on which to sample the odf.

        Returns
        -------
        values : ndarray
            The value of the odf on each point of `sphere`.

        """
        B = self.model.sampling_matrix(sphere)
        return dot(self._shm_coef, B.T)

    @auto_attr
    def gfa(self):
        return _gfa_sh(self._shm_coef, 0)

    @property
    def shm_coeff(self):
        """The spherical harmonic coefficients of the odf

        Make this a property for now, if there is a usecase for modifying
        the coefficients we can add a setter or expose the coefficients more
        directly
        """
        return self._shm_coef

    def predict(self, gtab=None, S0=1.0):
        """
        Predict the diffusion signal from the model coefficients.

        Parameters
        ----------
        gtab : a GradientTable class instance
            The directions and bvalues on which prediction is desired

        S0 : float array
           The mean non-diffusion-weighted signal in each voxel.
           Default: 1.0 in all voxels
        """
        if not hasattr(self.model, 'predict'):
            msg = "This model does not have prediction implemented yet"
            raise NotImplementedError(msg)
        return self.model.predict(self.shm_coeff, gtab, S0)


class CsaOdfModel(QballBaseModel):
    """Implementation of Constant Solid Angle reconstruction method.

    References
    ----------
    .. [1] Aganj, I., et. al. 2009. ODF Reconstruction in Q-Ball Imaging With
           Solid Angle Consideration.
    """
    min = .001
    max = .999
    _n0_const = .5 / np.sqrt(np.pi)

    def _set_fit_matrix(self, B, L, F, smooth):
        """The fit matrix, is used by fit_coefficients to return the
        coefficients of the odf"""
        invB = smooth_pinv(B, sqrt(smooth) * L)
        L = L[:, None]
        F = F[:, None]
        self._fit_matrix = (F * L) / (8 * np.pi) * invB

    def _get_shm_coef(self, data, mask=None):
        """Returns the coefficients of the model"""
        data = data[..., self._where_dwi]
        data = data.clip(self.min, self.max)
        loglog_data = np.log(-np.log(data))
        sh_coef = dot(loglog_data, self._fit_matrix.T)
        sh_coef[..., 0] = self._n0_const
        return sh_coef


class OpdtModel(QballBaseModel):
    """Implementation of Orientation Probability Density Transform
    reconstruction method.

    References
    ----------
    .. [1] Tristan-Vega, A., et. al. 2010. A new methodology for estimation of
           fiber populations in white matter of the brain with Funk-Radon
           transform.
    .. [2] Tristan-Vega, A., et. al. 2009. Estimation of fiber orientation
           probability density functions in high angular resolution diffusion
           imaging.
    """
    def _set_fit_matrix(self, B, L, F, smooth):
        invB = smooth_pinv(B, sqrt(smooth) * L)
        L = L[:, None]
        F = F[:, None]
        delta_b = F * L * invB
        delta_q = 4 * F * invB
        self._fit_matrix = delta_b, delta_q

    def _get_shm_coef(self, data, mask=None):
        """Returns the coefficients of the model"""
        delta_b, delta_q = self._fit_matrix
        return _slowadc_formula(data[..., self._where_dwi], delta_b, delta_q)


def _slowadc_formula(data, delta_b, delta_q):
    """formula used in SlowAdcOpdfModel"""
    logd = -np.log(data)
    return dot(logd * (1.5 - logd) * data, delta_q.T) - dot(data, delta_b.T)


class QballModel(QballBaseModel):
    """Implementation of regularized Qball reconstruction method.

    References
    ----------
    .. [1] Descoteaux, M., et. al. 2007. Regularized, fast, and robust
           analytical Q-ball imaging.
    """

    def _set_fit_matrix(self, B, L, F, smooth):
        invB = smooth_pinv(B, sqrt(smooth) * L)
        F = F[:, None]
        self._fit_matrix = F * invB

    def _get_shm_coef(self, data, mask=None):
        """Returns the coefficients of the model"""
        return dot(data[..., self._where_dwi], self._fit_matrix.T)


def normalize_data(data, where_b0, min_signal=1., out=None):
    """Normalizes the data with respect to the mean b0
    """
    if out is None:
        out = np.array(data, dtype='float32', copy=True)
    else:
        if out.dtype.kind != 'f':
            raise ValueError("out must be floating point")
        out[:] = data

    out.clip(min_signal, out=out)
    b0 = out[..., where_b0].mean(-1)
    out /= b0[..., None]
    return out


def hat(B):
    """Returns the hat matrix for the design matrix B
    """

    U, S, V = svd(B, False)
    H = dot(U, U.T)
    return H


def lcr_matrix(H):
    """Returns a matrix for computing leveraged, centered residuals from data

    if r = (d-Hd), the leveraged centered residuals are lcr = (r/l)-mean(r/l)
    ruturns the matrix R, such lcr = Rd

    """
    if H.ndim != 2 or H.shape[0] != H.shape[1]:
        raise ValueError('H should be a square matrix')

    leverages = sqrt(1 - H.diagonal())
    leverages = leverages[:, None]
    R = (eye(len(H)) - H) / leverages
    return R - R.mean(0)


def bootstrap_data_array(data, H, R, permute=None):
    """Applies the Residual Bootstraps to the data given H and R

    data must be normalized, ie 0 < data <= 1

    This function, and the bootstrap_data_voxel function, calculate
    residual-bootsrap samples given a Hat matrix and a Residual matrix. These
    samples can be used for non-parametric statistics or for bootstrap
    probabilistic tractography:

    References
    ----------
    .. [1] J. I. Berman, et al., "Probabilistic streamline q-ball tractography
           using the residual bootstrap" 2008.
    .. [2] HA Haroon, et al., "Using the model-based residual bootstrap to
           quantify uncertainty in fiber orientations from Q-ball analysis"
           2009.
    .. [3] B. Jeurissen, et al., "Probabilistic Fiber Tracking Using the
           Residual Bootstrap with Constrained Spherical Deconvolution" 2011.
    """

    if permute is None:
        permute = randint(data.shape[-1], size=data.shape[-1])
    assert R.shape == H.shape
    assert len(permute) == R.shape[-1]
    R = R[permute]
    data = dot(data, (H + R).T)
    return data


def bootstrap_data_voxel(data, H, R, permute=None):
    """Like bootstrap_data_array but faster when for a single voxel

    data must be 1d and normalized
    """
    if permute is None:
        permute = randint(data.shape[-1], size=data.shape[-1])
    r = dot(data, R.T)
    boot_data = dot(data, H.T)
    boot_data += r[permute]
    return boot_data


class ResidualBootstrapWrapper(object):
    """Returns a residual bootstrap sample of the signal_object when indexed

    Wraps a signal_object, this signal object can be an interpolator. When
    indexed, the the wrapper indexes the signal_object to get the signal.
    There wrapper than samples the residual boostrap distribution of signal and
    returns that sample.
    """
    def __init__(self, signal_object, B, where_dwi, min_signal=1.):
        """Builds a ResidualBootstrapWapper

        Given some linear model described by B, the design matrix, and a
        signal_object, returns an object which can sample the residual
        bootstrap distribution of the signal. We assume that the signals are
        normalized so we clip the bootsrap samples to be between `min_signal`
        and 1.

        Parameters
        ----------
        signal_object : some object that can be indexed
            This object should return diffusion weighted signals when indexed.
        B : ndarray, ndim=2
            The design matrix of the spherical harmonics model used to fit the
            data. This is the model that will be used to compute the residuals
            and sample the residual bootstrap distribution
        where_dwi :
            indexing object to find diffusion weighted signals from signal
        min_signal : float
            The lowest allowable signal.
        """
        self._signal_object = signal_object
        self._H = hat(B)
        self._R = lcr_matrix(self._H)
        self._min_signal = min_signal
        self._where_dwi = where_dwi
        self.data = signal_object.data
        self.voxel_size = signal_object.voxel_size

    def __getitem__(self, index):
        """Indexes self._signal_object and bootstraps the result"""
        signal = self._signal_object[index].copy()
        dwi_signal = signal[self._where_dwi]
        boot_signal = bootstrap_data_voxel(dwi_signal, self._H, self._R)
        boot_signal.clip(self._min_signal, 1., out=boot_signal)
        signal[self._where_dwi] = boot_signal
        return signal


def sf_to_sh(sf, sphere, sh_order=4, basis_type=None, smooth=0.0):
    """Spherical function to spherical harmonics (SH).

    Parameters
    ----------
    sf : ndarray
        Values of a function on the given `sphere`.
    sphere : Sphere
        The points on which the sf is defined.
    sh_order : int, optional
        Maximum SH order in the SH fit.  For `sh_order`, there will be
        ``(sh_order + 1) * (sh_order_2) / 2`` SH coefficients (default 4).
    basis_type : {None, 'mrtrix', 'fibernav'}
        ``None`` for the default dipy basis,
        ``mrtrix`` for the MRtrix basis, and
        ``fibernav`` for the FiberNavigator basis
        (default ``None``).
    smooth : float, optional
        Lambda-regularization in the SH fit (default 0.0).

    Returns
    -------
    sh : ndarray
        SH coefficients representing the input function.

    """
    sph_harm_basis = sph_harm_lookup.get(basis_type)

    if sph_harm_basis is None:
        raise ValueError("Invalid basis name.")
    B, m, n = sph_harm_basis(sh_order, sphere.theta, sphere.phi)

    L = -n * (n + 1)
    invB = smooth_pinv(B, sqrt(smooth) * L)
    sh = np.dot(sf, invB.T)

    return sh


def sh_to_sf(sh, sphere, sh_order, basis_type=None):
    """Spherical harmonics (SH) to spherical function (SF).

    Parameters
    ----------
    sh : ndarray
        SH coefficients representing a spherical function.
    sphere : Sphere
        The points on which to sample the spherical function.
    sh_order : int, optional
        Maximum SH order in the SH fit.  For `sh_order`, there will be
        ``(sh_order + 1) * (sh_order_2) / 2`` SH coefficients (default 4).
    basis_type : {None, 'mrtrix', 'fibernav'}
        ``None`` for the default dipy basis,
        ``mrtrix`` for the MRtrix basis, and
        ``fibernav`` for the FiberNavigator basis
        (default ``None``).

    Returns
    -------
    sf : ndarray
         Spherical function values on the `sphere`.

    """
    sph_harm_basis = sph_harm_lookup.get(basis_type)

    if sph_harm_basis is None:
        raise ValueError("Invalid basis name.")
    B, m, n = sph_harm_basis(sh_order, sphere.theta, sphere.phi)

    sf = np.dot(sh, B.T)

    return sf


def sh_to_sf_matrix(sphere, sh_order, basis_type=None, return_inv=True,
                    smooth=0):
    """ Matrix that transforms Spherical harmonics (SH) to spherical
    function (SF).

    Parameters
    ----------
    sphere : Sphere
        The points on which to sample the spherical function.
    sh_order : int, optional
        Maximum SH order in the SH fit.  For `sh_order`, there will be
        ``(sh_order + 1) * (sh_order_2) / 2`` SH coefficients (default 4).
    basis_type : {None, 'mrtrix', 'fibernav'}
        ``None`` for the default dipy basis,
        ``mrtrix`` for the MRtrix basis, and
        ``fibernav`` for the FiberNavigator basis
        (default ``None``).
    return_inv : bool
        If True then the inverse of the matrix is also returned
    smooth : float, optional
        Lambda-regularization in the SH fit (default 0.0).

    Returns
    -------
    B : ndarray
        Matrix that transforms spherical harmonics to spherical function
        ``sf = np.dot(sh, B)``.
    invB : ndarray
        Inverse of B.

    """
    sph_harm_basis = sph_harm_lookup.get(basis_type)

    if sph_harm_basis is None:
        raise ValueError("Invalid basis name.")
    B, m, n = sph_harm_basis(sh_order, sphere.theta, sphere.phi)

    if return_inv:
        L = -n * (n + 1)
        invB = smooth_pinv(B, np.sqrt(smooth) * L)
        return B.T, invB.T

    return B.T


def calculate_max_order(n_coeffs):
        """Calculate the maximal harmonic order, given that you know the
        number of parameters that were estimated.

        Parameters
        ----------
        n_coeffs : int
            The number of SH coefficients

        Returns
        -------
        L : int
            The maximal SH order, given the number of coefficients

        Notes
        -----
        The calculation in this function proceeds according to the following
        logic:
        .. math::
           n = \frac{1}{2} (L+1) (L+2)
           \rarrow 2n = L^2 + 3L + 2
           \rarrow L^2 + 3L + 2 - 2n = 0
           \rarrow L^2 + 3L + 2(1-n) = 0
           \rarrow L_{1,2} = \frac{-3 \pm \sqrt{9 - 8 (1-n)}}{2}
           \rarrow L{1,2} = \frac{-3 \pm \sqrt{1 + 8n}}{2}

        Finally, the positive value is chosen between the two options.
        """

        L1 = (-3 + np.sqrt(1 + 8 * n_coeffs)) / 2
        L2 = (-3 - np.sqrt(1 + 8 * n_coeffs)) / 2
        return np.int(max([L1, L2]))


def anisotropic_power(sh_coeffs, norm_factor=0.00001, power=2,
                      non_negative=True):
    """Calculates anisotropic power map with a given SH coefficient matrix

    Parameters
    ----------
    sh_coeffs : ndarray
        A ndarray where the last dimension is the
        SH coeff estimates for that voxel.
    norm_factor: float, optional
        The value to normalize the ap values. Default is 10^-5.
    power : int, optional
        The degree to which power maps are calculated. Default: 2.
    non_negative: bool, optional
        Whether to rectify the resulting map to be non-negative.
        Default: True.

    Returns
    -------
    log_ap : ndarray
        The log of the resulting power image.

    Notes
    ----------
    Calculate AP image based on a IxJxKxC SH coeffecient matrix based on the
    equation:
    .. math::
        AP = \sum_{l=2,4,6,...}{\frac{1}{2l+1} \sum_{m=-l}^l{|a_{l,m}|^n}}

    Where the last dimension, C, is made of a flattened array of $l$x$m$
    coefficients, where $l$ are the SH orders, and $m = 2l+1$,
    So l=1 has 1 coeffecient, l=2 has 5, ... l=8 has 17 and so on.
    A l=2 SH coeffecient matrix will then be composed of a IxJxKx6 volume.
    The power, $n$ is usually set to $n=2$.

    The final AP image is then shifted by -log(normal_factor), to be strictly non-negative. Remaining values < 0 are discarded (set to 0), per default,
    and this option is controlled throug the `non_negative` key word argument.

    References
    ----------
    .. [1]  Dell'Acqua, F., Lacerda, L., Catani, M., Simmons, A., 2014.
            Anisotropic Power Maps: A diffusion contrast to reveal low
            anisotropy tissues from HARDI data,
            in: Proceedings of International Society for Magnetic Resonance in
            Medicine. Milan, Italy.
    """

    dim = sh_coeffs.shape[:-1]
    n_coeffs = sh_coeffs.shape[-1]
    max_order = calculate_max_order(n_coeffs)
    ap = np.zeros(dim)
    n_start = 1
    for L in range(2, max_order + 2, 2):
        n_stop = n_start + (2 * L + 1)
        ap_i = np.mean(np.abs(sh_coeffs[..., n_start:n_stop]) ** power, -1)
        ap += ap_i
        n_start = n_stop

    # Shift the map to be mostly non-negative:
    log_ap = np.log(ap) - np.log(norm_factor)

    # Deal with residual negative values:
    if non_negative:
        if isinstance(log_ap, np.ndarray):
            # zero all values < 0
            log_ap[log_ap < 0] = 0
        else:
            # assume this is a singleton float (input was 1D):
            if log_ap < 0:
                return 0
    return log_ap