This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/reconst/tests/test_dki.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
""" Testing DKI """

from __future__ import division, print_function, absolute_import

import numpy as np
import random
import dipy.reconst.dki as dki
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_almost_equal)
from nose.tools import assert_raises
from dipy.sims.voxel import multi_tensor_dki
from dipy.io.gradients import read_bvals_bvecs
from dipy.core.gradients import gradient_table
from dipy.data import get_data
from dipy.reconst.dti import (from_lower_triangular, decompose_tensor)
from dipy.reconst.dki import (mean_kurtosis, carlson_rf,  carlson_rd,
                              axial_kurtosis, radial_kurtosis, _positive_evals)

from dipy.core.sphere import Sphere

from dipy.core.geometry import perpendicular_directions

fimg, fbvals, fbvecs = get_data('small_64D')
bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
gtab = gradient_table(bvals, bvecs)

# 2 shells for techniques that requires multishell data
bvals_2s = np.concatenate((bvals, bvals * 2), axis=0)
bvecs_2s = np.concatenate((bvecs, bvecs), axis=0)
gtab_2s = gradient_table(bvals_2s, bvecs_2s)

# Simulation 1. signals of two crossing fibers are simulated
mevals_cross = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087],
                         [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]])
angles_cross = [(80, 10), (80, 10), (20, 30), (20, 30)]
fie = 0.49
frac_cross = [fie*50, (1-fie) * 50, fie*50, (1-fie) * 50]
# Noise free simulates
signal_cross, dt_cross, kt_cross = multi_tensor_dki(gtab_2s, mevals_cross,
                                                    S0=100,
                                                    angles=angles_cross,
                                                    fractions=frac_cross,
                                                    snr=None)
evals_cross, evecs_cross = decompose_tensor(from_lower_triangular(dt_cross))
crossing_ref = np.concatenate((evals_cross, evecs_cross[0], evecs_cross[1],
                               evecs_cross[2], kt_cross), axis=0)

# Simulation 2. Spherical kurtosis tensor.- for white matter, this can be a
# biological implaussible scenario, however this simulation is usefull for
# testing the estimation of directional apparent kurtosis and the mean
# kurtosis, since its directional and mean kurtosis ground truth are a constant
# which can be easly mathematicaly calculated.
Di = 0.00099
De = 0.00226
mevals_sph = np.array([[Di, Di, Di], [De, De, De]])
frac_sph = [50, 50]
signal_sph, dt_sph, kt_sph = multi_tensor_dki(gtab_2s, mevals_sph, S0=100,
                                              fractions=frac_sph,
                                              snr=None)
evals_sph, evecs_sph = decompose_tensor(from_lower_triangular(dt_sph))
params_sph = np.concatenate((evals_sph, evecs_sph[0], evecs_sph[1],
                             evecs_sph[2], kt_sph), axis=0)
# Compute ground truth - since KT is spherical, appparent kurtosic coeficient
# for all gradient directions and mean kurtosis have to be equal to Kref_sph.
f = 0.5
Dg = f*Di + (1-f)*De
Kref_sphere = 3 * f * (1-f) * ((Di-De) / Dg) ** 2

# Simulation 3. Multi-voxel simulations - dataset of four voxels is simulated.
# Since the objective of this simulation is to see if procedures are able to
# work with multi-dimentional data all voxels contains the same crossing signal
# produced in simulation 1.

DWI = np.zeros((2, 2, 1, len(gtab_2s.bvals)))
DWI[0, 0, 0] = DWI[0, 1, 0] = DWI[1, 0, 0] = DWI[1, 1, 0] = signal_cross
multi_params = np.zeros((2, 2, 1, 27))
multi_params[0, 0, 0] = multi_params[0, 1, 0] = crossing_ref
multi_params[1, 0, 0] = multi_params[1, 1, 0] = crossing_ref


def test_positive_evals():
    # Tested evals
    L1 = np.array([[1e-3, 1e-3, 2e-3], [0, 1e-3, 0]])
    L2 = np.array([[3e-3, 0, 2e-3], [1e-3, 1e-3, 0]])
    L3 = np.array([[4e-3, 1e-4, 0], [0, 1e-3, 0]])
    # only the first voxels have all eigenvalues larger than zero, thus:
    expected_ind = np.array([[True, False, False], [False, True, False]],
                            dtype=bool)
    # test function _positive_evals
    ind = _positive_evals(L1, L2, L3)
    assert_array_equal(ind, expected_ind)


def test_split_dki_param():
    dkiM = dki.DiffusionKurtosisModel(gtab_2s, fit_method="OLS")
    dkiF = dkiM.fit(DWI)
    evals, evecs, kt = dki.split_dki_param(dkiF.model_params)

    assert_array_almost_equal(evals, dkiF.evals)
    assert_array_almost_equal(evecs, dkiF.evecs)
    assert_array_almost_equal(kt, dkiF.kt)


def test_dki_fits():
    """ DKI fits are tested on noise free crossing fiber simulates """

    # OLS fitting
    dkiM = dki.DiffusionKurtosisModel(gtab_2s, fit_method="OLS")
    dkiF = dkiM.fit(signal_cross)

    assert_array_almost_equal(dkiF.model_params, crossing_ref)

    # WLS fitting
    dki_wlsM = dki.DiffusionKurtosisModel(gtab_2s, fit_method="WLS")
    dki_wlsF = dki_wlsM.fit(signal_cross)

    assert_array_almost_equal(dki_wlsF.model_params, crossing_ref)

    # testing multi-voxels
    dkiF_multi = dkiM.fit(DWI)
    assert_array_almost_equal(dkiF_multi.model_params, multi_params)

    dkiF_multi = dki_wlsM.fit(DWI)
    assert_array_almost_equal(dkiF_multi.model_params, multi_params)


def test_apparent_kurtosis_coef():
    """ Apparent kurtosis coeficients are tested for a spherical kurtosis
    tensor """

    sph = Sphere(xyz=gtab.bvecs[gtab.bvals > 0])
    AKC = dki.apparent_kurtosis_coef(params_sph, sph)

    # check all direction
    for d in range(len(gtab.bvecs[gtab.bvals > 0])):
        assert_array_almost_equal(AKC[d], Kref_sphere)


def test_dki_predict():
    dkiM = dki.DiffusionKurtosisModel(gtab_2s)
    pred = dkiM.predict(crossing_ref, S0=100)

    assert_array_almost_equal(pred, signal_cross)

    # just to check that it works with more than one voxel:
    pred_multi = dkiM.predict(multi_params, S0=100)
    assert_array_almost_equal(pred_multi, DWI)

    # check the function predict of the DiffusionKurtosisFit object
    dkiF = dkiM.fit(DWI)
    pred_multi = dkiF.predict(gtab_2s, S0=100)
    assert_array_almost_equal(pred_multi, DWI)

    dkiF = dkiM.fit(pred_multi)
    pred_from_fit = dkiF.predict(dkiM.gtab, S0=100)
    assert_array_almost_equal(pred_from_fit, DWI)


def test_carlson_rf():
    # Define inputs that we know the outputs from:
    # Carlson, B.C., 1994. Numerical computation of real or complex
    # elliptic integrals. arXiv:math/9409227 [math.CA]

    # Real values (test in 2D format)
    x = np.array([[1.0, 0.5], [2.0, 2.0]])
    y = np.array([[2.0, 1.0], [3.0, 3.0]])
    z = np.array([[0.0, 0.0], [4.0, 4.0]])

    # Defene reference outputs
    RF_ref = np.array([[1.3110287771461, 1.8540746773014],
                       [0.58408284167715, 0.58408284167715]])

    # Compute integrals
    RF = carlson_rf(x, y, z)

    # Compare
    assert_array_almost_equal(RF, RF_ref)

    # Complex values
    x = np.array([1j, 1j - 1, 1j, 1j - 1])
    y = np.array([-1j, 1j, -1j, 1j])
    z = np.array([0.0, 0.0, 2, 1 - 1j])

    # Defene reference outputs
    RF_ref = np.array([1.8540746773014, 0.79612586584234 - 1.2138566698365j,
                       1.0441445654064, 0.93912050218619 - 0.53296252018635j])
    # Compute integrals
    RF = carlson_rf(x, y, z, errtol=3e-5)

    # Compare
    assert_array_almost_equal(RF, RF_ref)


def test_carlson_rd():

    # Define inputs that we know the outputs from:
    # Carlson, B.C., 1994. Numerical computation of real or complex
    # elliptic integrals. arXiv:math/9409227 [math.CA]

    # Real values
    x = np.array([0.0, 2.0])
    y = np.array([2.0, 3.0])
    z = np.array([1.0, 4.0])

    # Defene reference outputs
    RD_ref = np.array([1.7972103521034, 0.16510527294261])

    # Compute integrals
    RD = carlson_rd(x, y, z, errtol=1e-5)

    # Compare
    assert_array_almost_equal(RD, RD_ref)

    # Complex values (testing in 2D format)
    x = np.array([[1j, 0.0], [0.0, -2 - 1j]])
    y = np.array([[-1j, 1j], [1j-1, -1j]])
    z = np.array([[2.0, -1j], [1j, -1 + 1j]])

    # Defene reference outputs
    RD_ref = np.array([[0.65933854154220, 1.2708196271910 + 2.7811120159521j],
                       [-1.8577235439239 - 0.96193450888839j,
                        1.8249027393704 - 1.2218475784827j]])
    # Compute integrals
    RD = carlson_rd(x, y, z, errtol=1e-5)

    # Compare
    assert_array_almost_equal(RD, RD_ref)


def test_Wrotate_single_fiber():

    # Rotate the kurtosis tensor of single fiber simulate to the diffusion
    # tensor diagonal and check that is equal to the kurtosis tensor of the
    # same single fiber simulated directly to the x-axis

    # Define single fiber simulate
    mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087]])
    fie = 0.49
    frac = [fie*100, (1 - fie)*100]

    # simulate single fiber not aligned to the x-axis
    theta = random.uniform(0, 180)
    phi = random.uniform(0, 320)
    angles = [(theta, phi), (theta, phi)]
    signal, dt, kt = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                      fractions=frac, snr=None)

    evals, evecs = decompose_tensor(from_lower_triangular(dt))

    kt_rotated = dki.Wrotate(kt, evecs)
    # Now coordinate system has the DT diagonal aligned to the x-axis

    # Reference simulation in which DT diagonal is directly aligned to the
    # x-axis
    angles = (90, 0), (90, 0)
    signal, dt_ref, kt_ref = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                              fractions=frac, snr=None)

    assert_array_almost_equal(kt_rotated, kt_ref)


def test_Wrotate_crossing_fibers():
    # Test 2 - simulate crossing fibers intersecting at 70 degrees.
    # In this case, diffusion tensor principal eigenvector will be aligned in
    # the middle of the crossing fibers. Thus, after rotating the kurtosis
    # tensor, this will be equal to a kurtosis tensor simulate of crossing
    # fibers both deviating 35 degrees from the x-axis. Moreover, we know that
    # crossing fibers will be aligned to the x-y plane, because the smaller
    # diffusion eigenvalue, perpendicular to both crossings fibers, will be
    # aligned to the z-axis.

    # Simulate the crossing fiber
    angles = [(90, 30), (90, 30), (20, 30), (20, 30)]
    fie = 0.49
    frac = [fie*50, (1-fie) * 50, fie*50, (1-fie) * 50]
    mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087],
                       [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]])

    signal, dt, kt = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                      fractions=frac, snr=None)

    evals, evecs = decompose_tensor(from_lower_triangular(dt))

    kt_rotated = dki.Wrotate(kt, evecs)
    # Now coordinate system has diffusion tensor diagonal aligned to the x-axis

    # Simulate the reference kurtosis tensor
    angles = [(90, 35), (90, 35), (90, -35), (90, -35)]

    signal, dt, kt_ref = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                          fractions=frac, snr=None)

    # Compare rotated with the reference
    assert_array_almost_equal(kt_rotated, kt_ref)


def test_Wcons():

    # Construct the 4D kurtosis tensor manualy from the crossing fiber kt
    # simulate
    Wfit = np.zeros([3, 3, 3, 3])

    # Wxxxx
    Wfit[0, 0, 0, 0] = kt_cross[0]

    # Wyyyy
    Wfit[1, 1, 1, 1] = kt_cross[1]

    # Wzzzz
    Wfit[2, 2, 2, 2] = kt_cross[2]

    # Wxxxy
    Wfit[0, 0, 0, 1] = Wfit[0, 0, 1, 0] = Wfit[0, 1, 0, 0] = kt_cross[3]
    Wfit[1, 0, 0, 0] = kt_cross[3]

    # Wxxxz
    Wfit[0, 0, 0, 2] = Wfit[0, 0, 2, 0] = Wfit[0, 2, 0, 0] = kt_cross[4]
    Wfit[2, 0, 0, 0] = kt_cross[4]

    # Wxyyy
    Wfit[0, 1, 1, 1] = Wfit[1, 0, 1, 1] = Wfit[1, 1, 1, 0] = kt_cross[5]
    Wfit[1, 1, 0, 1] = kt_cross[5]

    # Wxxxz
    Wfit[1, 1, 1, 2] = Wfit[1, 2, 1, 1] = Wfit[2, 1, 1, 1] = kt_cross[6]
    Wfit[1, 1, 2, 1] = kt_cross[6]

    # Wxzzz
    Wfit[0, 2, 2, 2] = Wfit[2, 2, 2, 0] = Wfit[2, 0, 2, 2] = kt_cross[7]
    Wfit[2, 2, 0, 2] = kt_cross[7]

    # Wyzzz
    Wfit[1, 2, 2, 2] = Wfit[2, 2, 2, 1] = Wfit[2, 1, 2, 2] = kt_cross[8]
    Wfit[2, 2, 1, 2] = kt_cross[8]

    # Wxxyy
    Wfit[0, 0, 1, 1] = Wfit[0, 1, 0, 1] = Wfit[0, 1, 1, 0] = kt_cross[9]
    Wfit[1, 0, 0, 1] = Wfit[1, 0, 1, 0] = Wfit[1, 1, 0, 0] = kt_cross[9]

    # Wxxzz
    Wfit[0, 0, 2, 2] = Wfit[0, 2, 0, 2] = Wfit[0, 2, 2, 0] = kt_cross[10]
    Wfit[2, 0, 0, 2] = Wfit[2, 0, 2, 0] = Wfit[2, 2, 0, 0] = kt_cross[10]

    # Wyyzz
    Wfit[1, 1, 2, 2] = Wfit[1, 2, 1, 2] = Wfit[1, 2, 2, 1] = kt_cross[11]
    Wfit[2, 1, 1, 2] = Wfit[2, 2, 1, 1] = Wfit[2, 1, 2, 1] = kt_cross[11]

    # Wxxyz
    Wfit[0, 0, 1, 2] = Wfit[0, 0, 2, 1] = Wfit[0, 1, 0, 2] = kt_cross[12]
    Wfit[0, 1, 2, 0] = Wfit[0, 2, 0, 1] = Wfit[0, 2, 1, 0] = kt_cross[12]
    Wfit[1, 0, 0, 2] = Wfit[1, 0, 2, 0] = Wfit[1, 2, 0, 0] = kt_cross[12]
    Wfit[2, 0, 0, 1] = Wfit[2, 0, 1, 0] = Wfit[2, 1, 0, 0] = kt_cross[12]

    # Wxyyz
    Wfit[0, 1, 1, 2] = Wfit[0, 1, 2, 1] = Wfit[0, 2, 1, 1] = kt_cross[13]
    Wfit[1, 0, 1, 2] = Wfit[1, 1, 0, 2] = Wfit[1, 1, 2, 0] = kt_cross[13]
    Wfit[1, 2, 0, 1] = Wfit[1, 2, 1, 0] = Wfit[2, 0, 1, 1] = kt_cross[13]
    Wfit[2, 1, 0, 1] = Wfit[2, 1, 1, 0] = Wfit[1, 0, 2, 1] = kt_cross[13]

    # Wxyzz
    Wfit[0, 1, 2, 2] = Wfit[0, 2, 1, 2] = Wfit[0, 2, 2, 1] = kt_cross[14]
    Wfit[1, 0, 2, 2] = Wfit[1, 2, 0, 2] = Wfit[1, 2, 2, 0] = kt_cross[14]
    Wfit[2, 0, 1, 2] = Wfit[2, 0, 2, 1] = Wfit[2, 1, 0, 2] = kt_cross[14]
    Wfit[2, 1, 2, 0] = Wfit[2, 2, 0, 1] = Wfit[2, 2, 1, 0] = kt_cross[14]

    # Function to be tested
    W4D = dki.Wcons(kt_cross)

    Wfit = Wfit.reshape(-1)
    W4D = W4D.reshape(-1)

    assert_array_almost_equal(W4D, Wfit)


def test_spherical_dki_statistics():
    # tests if MK, AK and RK are equal to expected values of a spherical
    # kurtosis tensor

    # Define multi voxel spherical kurtosis simulations
    MParam = np.zeros((2, 2, 2, 27))
    MParam[0, 0, 0] = MParam[0, 0, 1] = MParam[0, 1, 0] = params_sph
    MParam[0, 1, 1] = MParam[1, 1, 0] = params_sph
    # MParam[1, 1, 1], MParam[1, 0, 0], and MParam[1, 0, 1] remains zero

    MRef = np.zeros((2, 2, 2))
    MRef[0, 0, 0] = MRef[0, 0, 1] = MRef[0, 1, 0] = Kref_sphere
    MRef[0, 1, 1] = MRef[1, 1, 0] = Kref_sphere
    MRef[1, 1, 1] = MRef[1, 0, 0] = MRef[1, 0, 1] = 0

    # Mean kurtosis analytical solution
    MK_multi = mean_kurtosis(MParam)
    assert_array_almost_equal(MK_multi, MRef)

    # radial kurtosis analytical solution
    RK_multi = radial_kurtosis(MParam)
    assert_array_almost_equal(RK_multi, MRef)

    # axial kurtosis analytical solution
    AK_multi = axial_kurtosis(MParam)
    assert_array_almost_equal(AK_multi, MRef)


def test_compare_MK_method():
    # tests if analytical solution of MK is equal to the average of directional
    # kurtosis sampled from a sphere

    # DKI Model fitting
    dkiM = dki.DiffusionKurtosisModel(gtab_2s)
    dkiF = dkiM.fit(signal_cross)

    # MK analytical solution
    MK_as = dkiF.mk()

    # MK numerical method
    sph = Sphere(xyz=gtab.bvecs[gtab.bvals > 0])
    MK_nm = np.mean(dki.apparent_kurtosis_coef(dkiF.model_params, sph),
                    axis=-1)

    assert_array_almost_equal(MK_as, MK_nm, decimal=1)


def test_single_voxel_DKI_stats():
    # tests if AK and RK are equal to expected values for a single fiber
    # simulate randomly oriented
    ADi = 0.00099
    ADe = 0.00226
    RDi = 0
    RDe = 0.00087
    # Reference values
    AD = fie*ADi + (1-fie)*ADe
    AK = 3 * fie * (1-fie) * ((ADi-ADe) / AD) ** 2
    RD = fie*RDi + (1-fie)*RDe
    RK = 3 * fie * (1-fie) * ((RDi-RDe) / RD) ** 2
    ref_vals = np.array([AD, AK, RD, RK])

    # simulate fiber randomly oriented
    theta = random.uniform(0, 180)
    phi = random.uniform(0, 320)
    angles = [(theta, phi), (theta, phi)]
    mevals = np.array([[ADi, RDi, RDi], [ADe, RDe, RDe]])
    frac = [fie*100, (1-fie)*100]
    signal, dt, kt = multi_tensor_dki(gtab_2s, mevals, S0=100, angles=angles,
                                      fractions=frac, snr=None)
    evals, evecs = decompose_tensor(from_lower_triangular(dt))
    dki_par = np.concatenate((evals, evecs[0], evecs[1], evecs[2], kt), axis=0)

    # Estimates using dki functions
    ADe1 = dki.axial_diffusivity(evals)
    RDe1 = dki.radial_diffusivity(evals)
    AKe1 = axial_kurtosis(dki_par)
    RKe1 = radial_kurtosis(dki_par)
    e1_vals = np.array([ADe1, AKe1, RDe1, RKe1])
    assert_array_almost_equal(e1_vals, ref_vals)

    # Estimates using the kurtosis class object
    dkiM = dki.DiffusionKurtosisModel(gtab_2s)
    dkiF = dkiM.fit(signal)
    e2_vals = np.array([dkiF.ad, dkiF.ak(), dkiF.rd, dkiF.rk()])
    assert_array_almost_equal(e2_vals, ref_vals)

    # test MK (note this test correspond to the MK singularity L2==L3)
    MK_as = dkiF.mk()
    sph = Sphere(xyz=gtab.bvecs[gtab.bvals > 0])
    MK_nm = np.mean(dkiF.akc(sph))

    assert_array_almost_equal(MK_as, MK_nm, decimal=1)


def test_compare_RK_methods():
    # tests if analytical solution of RK is equal to the perpendicular kurtosis
    # relative to the first diffusion axis

    # DKI Model fitting
    dkiM = dki.DiffusionKurtosisModel(gtab_2s)
    dkiF = dkiM.fit(signal_cross)

    # MK analytical solution
    RK_as = dkiF.rk()

    # MK numerical method
    evecs = dkiF.evecs
    p_dir = perpendicular_directions(evecs[:, 0], num=30, half=True)
    ver = Sphere(xyz=p_dir)
    RK_nm = np.mean(dki.apparent_kurtosis_coef(dkiF.model_params, ver),
                    axis=-1)

    assert_array_almost_equal(RK_as, RK_nm)


def test_MK_singularities():
    # To test MK in case that analytical solution was a singularity not covered
    # by other tests

    dkiM = dki.DiffusionKurtosisModel(gtab_2s)

    # test singularity L1 == L2 - this is the case of a prolate diffusion
    # tensor for crossing fibers at 90 degrees
    angles_all = np.array([[(90, 0), (90, 0), (0, 0), (0, 0)],
                           [(89.9, 0), (89.9, 0), (0, 0), (0, 0)]])
    for angles_90 in angles_all:
        s_90, dt_90, kt_90 = multi_tensor_dki(gtab_2s, mevals_cross, S0=100,
                                              angles=angles_90,
                                              fractions=frac_cross, snr=None)
        dkiF = dkiM.fit(s_90)
        MK = dkiF.mk()

        sph = Sphere(xyz=gtab.bvecs[gtab.bvals > 0])

        MK_nm = np.mean(dkiF.akc(sph))

        assert_almost_equal(MK, MK_nm, decimal=2)

        # test singularity L1 == L3 and L1 != L2
        # since L1 is defined as the larger eigenvalue and L3 the smallest
        # eigenvalue, this singularity teoretically will never be called,
        # because for L1 == L3, L2 have also to be  = L1 and L2.
        # Nevertheless, I decided to include this test since this singularity
        # is revelant for cases that eigenvalues are not ordered

        # artificially revert the eigenvalue and eigenvector order
        dki_params = dkiF.model_params.copy()
        dki_params[1] = dkiF.model_params[2]
        dki_params[2] = dkiF.model_params[1]
        dki_params[4] = dkiF.model_params[5]
        dki_params[5] = dkiF.model_params[4]
        dki_params[7] = dkiF.model_params[8]
        dki_params[8] = dkiF.model_params[7]
        dki_params[10] = dkiF.model_params[11]
        dki_params[11] = dkiF.model_params[10]

        MK = dki.mean_kurtosis(dki_params)
        MK_nm = np.mean(dki.apparent_kurtosis_coef(dki_params, sph))

        assert_almost_equal(MK, MK_nm, decimal=2)


def test_dki_errors():

    # first error of DKI module is if a unknown fit method is given
    assert_raises(ValueError, dki.DiffusionKurtosisModel, gtab_2s,
                  fit_method="JOANA")

    # second error of DKI module is if a min_signal is defined as negative
    assert_raises(ValueError, dki.DiffusionKurtosisModel, gtab_2s,
                  min_signal=-1)
    # try case with correct min_signal
    dkiM = dki.DiffusionKurtosisModel(gtab_2s, min_signal=1)
    dkiF = dkiM.fit(DWI)
    assert_array_almost_equal(dkiF.model_params, multi_params)

    # third error is if a given mask do not have same shape as data
    dkiM = dki.DiffusionKurtosisModel(gtab_2s)

    # test a correct mask
    dkiF = dkiM.fit(DWI)
    mask_correct = dkiF.fa > 0
    mask_correct[1, 1] = False
    multi_params[1, 1] = np.zeros(27)
    mask_not_correct = np.array([[True, True, False], [True, False, False]])
    dkiF = dkiM.fit(DWI, mask=mask_correct)
    assert_array_almost_equal(dkiF.model_params, multi_params)
    # test a incorrect mask
    assert_raises(ValueError, dkiM.fit, DWI, mask=mask_not_correct)