This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/reconst/tests/test_peak_finding.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
from __future__ import division, print_function, absolute_import

import numpy as np
import numpy.testing as npt
from dipy.reconst.recspeed import (local_maxima, remove_similar_vertices,
                                   search_descending)
from dipy.data import get_sphere, get_data
from dipy.core.sphere import unique_edges, HemiSphere
from dipy.sims.voxel import all_tensor_evecs

def test_local_maxima():
    sphere = get_sphere('symmetric724')
    vertices, faces = sphere.vertices, sphere.faces
    edges = unique_edges(faces)

    # Check that the first peak is == max(odf)
    odf = abs(vertices.sum(-1))
    peak_values, peak_index = local_maxima(odf, edges)
    npt.assert_equal(max(odf), peak_values[0])
    npt.assert_equal(max(odf), odf[peak_index[0]])

    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.
    odf[143] = 143.
    odf[505] = 505.
    peak_values, peak_index = local_maxima(odf, edges)
    npt.assert_array_equal(peak_values, [505, 143, 1])
    npt.assert_array_equal(peak_index, [505, 143, 1])

    # Check that neighboring points can both be peaks
    odf = np.zeros(len(vertices))
    point1, point2 = edges[0]
    odf[[point1, point2]] = 1.
    peak_values, peak_index = local_maxima(odf, edges)
    npt.assert_array_equal(peak_values, [1., 1.])
    npt.assert_(point1 in peak_index)
    npt.assert_(point2 in peak_index)

    # Repeat with a hemisphere
    hemisphere = HemiSphere(xyz=vertices, faces=faces)
    vertices, edges = hemisphere.vertices, hemisphere.edges

    # Check that the first peak is == max(odf)
    odf = abs(vertices.sum(-1))
    peak_values, peak_index = local_maxima(odf, edges)
    npt.assert_equal(max(odf), peak_values[0])
    npt.assert_equal(max(odf), odf[peak_index[0]])

    # Create an artificial odf with a few peaks
    odf = np.zeros(len(vertices))
    odf[1] = 1.
    odf[143] = 143.
    odf[300] = 300.
    peak_value, peak_index = local_maxima(odf, edges)
    npt.assert_array_equal(peak_value, [300, 143, 1])
    npt.assert_array_equal(peak_index, [300, 143, 1])

    # Check that neighboring points can both be peaks
    odf = np.zeros(len(vertices))
    point1, point2 = edges[0]
    odf[[point1, point2]] = 1.
    peak_values, peak_index = local_maxima(odf, edges)
    npt.assert_array_equal(peak_values, [1., 1.])
    npt.assert_(point1 in peak_index)
    npt.assert_(point2 in peak_index)

    # Should raise an error if odf has nans
    odf[20] = np.nan
    npt.assert_raises(ValueError, local_maxima, odf, edges)

    # Should raise an error if edge values are too large to index odf
    edges[0, 0] = 9999
    odf[20] = 0
    npt.assert_raises(IndexError, local_maxima, odf, edges)


def test_remove_similar_peaks():
    vertices = np.array([[1., 0., 0.],
                         [0., 1., 0.],
                         [0., 0., 1.],
                         [1.1, 1., 0.],
                         [0., 2., 1.],
                         [2., 1., 0.],
                         [1., 0., 0.]])
    norms = np.sqrt((vertices*vertices).sum(-1))
    vertices = vertices/norms[:, None]

    # Return unique vertices
    uv = remove_similar_vertices(vertices, .01)
    npt.assert_array_equal(uv, vertices[:6])

    # Return vertices with mapping and indices
    uv, mapping, index = remove_similar_vertices(vertices, .01,
                                                 return_mapping=True,
                                                 return_index=True)
    npt.assert_array_equal(uv, vertices[:6])
    npt.assert_array_equal(mapping, list(range(6)) + [0])
    npt.assert_array_equal(index, range(6))

    # Test mapping with different angles
    uv, mapping = remove_similar_vertices(vertices, .01, return_mapping=True)
    npt.assert_array_equal(uv, vertices[:6])
    npt.assert_array_equal(mapping, list(range(6)) + [0])
    uv, mapping = remove_similar_vertices(vertices, 30, return_mapping=True)
    npt.assert_array_equal(uv, vertices[:4])
    npt.assert_array_equal(mapping, list(range(4)) + [1, 0, 0])
    uv, mapping = remove_similar_vertices(vertices, 60, return_mapping=True)
    npt.assert_array_equal(uv, vertices[:3])
    npt.assert_array_equal(mapping, list(range(3)) + [0, 1, 0, 0])

    # Test index with different angles
    uv, index = remove_similar_vertices(vertices, .01, return_index=True)
    npt.assert_array_equal(uv, vertices[:6])
    npt.assert_array_equal(index, range(6))
    uv, index = remove_similar_vertices(vertices, 30, return_index=True)
    npt.assert_array_equal(uv, vertices[:4])
    npt.assert_array_equal(index, range(4))
    uv, index = remove_similar_vertices(vertices, 60, return_index=True)
    npt.assert_array_equal(uv, vertices[:3])
    npt.assert_array_equal(index, range(3))


def test_search_descending():
    a = np.linspace(10., 1., 10)

    npt.assert_equal(search_descending(a, 1.), 1)
    npt.assert_equal(search_descending(a, .89), 2)
    npt.assert_equal(search_descending(a, .79), 3)

    # Test small array
    npt.assert_equal(search_descending(a[:1], 1.), 1)
    npt.assert_equal(search_descending(a[:1], 0.), 1)
    npt.assert_equal(search_descending(a[:1], .5), 1)

    # Test very small array
    npt.assert_equal(search_descending(a[:0], 1.), 0)


if __name__ == '__main__':
    import nose
    nose.runmodule()