This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/reconst/tests/test_sfm.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
import numpy as np
import numpy.testing as npt
import nibabel as nib
import dipy.reconst.sfm as sfm
import dipy.data as dpd
import dipy.core.gradients as grad
import dipy.sims.voxel as sims
import dipy.core.optimize as opt
import dipy.reconst.cross_validation as xval


def test_design_matrix():
    data, gtab = dpd.dsi_voxels()
    sphere = dpd.get_sphere()
    # Make it with NNLS, so that it gets tested regardless of sklearn
    sparse_fascicle_model = sfm.SparseFascicleModel(gtab, sphere,
                                                    solver='NNLS')
    npt.assert_equal(sparse_fascicle_model.design_matrix.shape,
                     (np.sum(~gtab.b0s_mask), sphere.vertices.shape[0]))


@npt.dec.skipif(not sfm.has_sklearn)
def test_sfm():
    fdata, fbvals, fbvecs = dpd.get_data()
    data = nib.load(fdata).get_data()
    gtab = grad.gradient_table(fbvals, fbvecs)
    for iso in [sfm.ExponentialIsotropicModel, None]:
        sfmodel = sfm.SparseFascicleModel(gtab, isotropic=iso)
        sffit1 = sfmodel.fit(data[0, 0, 0])
        sphere = dpd.get_sphere()
        odf1 = sffit1.odf(sphere)
        pred1 = sffit1.predict(gtab)
        mask = np.ones(data.shape[:-1])
        sffit2 = sfmodel.fit(data, mask)
        pred2 = sffit2.predict(gtab)
        odf2 = sffit2.odf(sphere)
        sffit3 = sfmodel.fit(data)
        pred3 = sffit3.predict(gtab)
        odf3 = sffit3.odf(sphere)
        npt.assert_almost_equal(pred3, pred2, decimal=2)
        npt.assert_almost_equal(pred3[0, 0, 0], pred1, decimal=2)
        npt.assert_almost_equal(odf3[0, 0, 0], odf1, decimal=2)
        npt.assert_almost_equal(odf3[0, 0, 0], odf2[0, 0, 0], decimal=2)

        # Fit zeros and you will get back zeros
        npt.assert_almost_equal(sfmodel.fit(np.zeros(data[0, 0, 0].shape)).beta,
                                np.zeros(sfmodel.design_matrix[0].shape[-1]))


@npt.dec.skipif(not sfm.has_sklearn)
def test_predict():
    SNR = 1000
    S0 = 100
    _, fbvals, fbvecs = dpd.get_data('small_64D')
    bvals = np.load(fbvals)
    bvecs = np.load(fbvecs)
    gtab = grad.gradient_table(bvals, bvecs)
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    angles = [(0, 0), (60, 0)]
    S, sticks = sims.multi_tensor(gtab, mevals, S0, angles=angles,
                                  fractions=[10, 90], snr=SNR)

    sfmodel = sfm.SparseFascicleModel(gtab, response=[0.0015, 0.0003, 0.0003])
    sffit = sfmodel.fit(S)
    pred = sffit.predict()
    npt.assert_(xval.coeff_of_determination(pred, S) > 97)

    # Should be possible to predict using a different gtab:
    new_gtab = grad.gradient_table(bvals[::2], bvecs[::2])
    new_pred = sffit.predict(new_gtab)
    npt.assert_(xval.coeff_of_determination(new_pred, S[::2]) > 97)


def test_sfm_background():
    fdata, fbvals, fbvecs = dpd.get_data()
    data = nib.load(fdata).get_data()
    gtab = grad.gradient_table(fbvals, fbvecs)
    to_fit = data[0,0,0]
    to_fit[gtab.b0s_mask] = 0
    sfmodel = sfm.SparseFascicleModel(gtab, solver='NNLS')
    sffit = sfmodel.fit(to_fit)
    npt.assert_equal(sffit.beta, np.zeros_like(sffit.beta))


def test_sfm_stick():
    fdata, fbvals, fbvecs = dpd.get_data()
    data = nib.load(fdata).get_data()
    gtab = grad.gradient_table(fbvals, fbvecs)
    sfmodel = sfm.SparseFascicleModel(gtab, solver='NNLS',
                                      response=[0.001, 0, 0])
    sffit1 = sfmodel.fit(data[0, 0, 0])
    sphere = dpd.get_sphere()
    odf1 = sffit1.odf(sphere)
    pred1 = sffit1.predict(gtab)

    SNR = 1000
    S0 = 100
    mevals = np.array(([0.001, 0, 0],
                       [0.001, 0, 0]))
    angles = [(0, 0), (60, 0)]
    S, sticks = sims.multi_tensor(gtab, mevals, S0, angles=angles,
                                  fractions=[50, 50], snr=SNR)

    sfmodel = sfm.SparseFascicleModel(gtab, solver='NNLS',
                                      response=[0.001, 0, 0])
    sffit = sfmodel.fit(S)
    pred = sffit.predict()
    npt.assert_(xval.coeff_of_determination(pred, S) > 96)


def test_sfm_sklearnlinearsolver():
    class SillySolver(opt.SKLearnLinearSolver):
        def fit(self, X, y):
            self.coef_ = np.ones(X.shape[-1])

    class EvenSillierSolver(object):
        def fit(self, X, y):
            self.coef_ = np.ones(X.shape[-1])

    fdata, fbvals, fbvecs = dpd.get_data()
    gtab = grad.gradient_table(fbvals, fbvecs)
    sfmodel = sfm.SparseFascicleModel(gtab, solver=SillySolver())

    npt.assert_(isinstance(sfmodel.solver, SillySolver))
    npt.assert_raises(ValueError,
                      sfm.SparseFascicleModel,
                      gtab,
                      solver=EvenSillierSolver())


@npt.dec.skipif(not sfm.has_sklearn)
def test_exponential_iso():
    fdata, fbvals, fbvecs = dpd.get_data()
    data_dti = nib.load(fdata).get_data()
    gtab_dti = grad.gradient_table(fbvals, fbvecs)
    data_multi, gtab_multi = dpd.dsi_deconv_voxels()

    for data, gtab in zip([data_dti, data_multi], [gtab_dti, gtab_multi]):
        sfmodel = sfm.SparseFascicleModel(
                  gtab, isotropic=sfm.ExponentialIsotropicModel)

        sffit1 = sfmodel.fit(data[0, 0, 0])
        sphere = dpd.get_sphere()
        odf1 = sffit1.odf(sphere)
        pred1 = sffit1.predict(gtab)

        SNR = 1000
        S0 = 100
        mevals = np.array(([0.0015, 0.0005, 0.0005],
                           [0.0015, 0.0005, 0.0005]))
        angles = [(0, 0), (60, 0)]
        S, sticks = sims.multi_tensor(gtab, mevals, S0, angles=angles,
                                      fractions=[50, 50], snr=SNR)
        sffit = sfmodel.fit(S)
        pred = sffit.predict()
        npt.assert_(xval.coeff_of_determination(pred, S) > 96)