This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/sims/tests/test_voxel.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
import numpy as np

from nose.tools import (assert_true, assert_false, assert_equal,
                        assert_almost_equal)
from numpy.testing import (assert_array_equal, assert_array_almost_equal,
                           assert_)

from dipy.sims.voxel import (_check_directions, SingleTensor, MultiTensor,
                             multi_tensor_odf, all_tensor_evecs, add_noise,
                             single_tensor, sticks_and_ball, multi_tensor_dki,
                             kurtosis_element, DKI_signal)
from dipy.core.geometry import (vec2vec_rotmat, sphere2cart)
from dipy.data import get_data, get_sphere
from dipy.core.gradients import gradient_table
from dipy.io.gradients import read_bvals_bvecs


fimg, fbvals, fbvecs = get_data('small_64D')
bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
gtab = gradient_table(bvals, bvecs)

# 2 shells for techniques that requires multishell data
bvals_2s = np.concatenate((bvals, bvals * 2), axis=0)
bvecs_2s = np.concatenate((bvecs, bvecs), axis=0)
gtab_2s = gradient_table(bvals_2s, bvecs_2s)


def diff2eigenvectors(dx, dy, dz):
    """ numerical derivatives 2 eigenvectors
    """
    u = np.array([dx, dy, dz])
    u = u / np.linalg.norm(u)
    R = vec2vec_rotmat(basis[:, 0], u)
    eig0 = u
    eig1 = np.dot(R, basis[:, 1])
    eig2 = np.dot(R, basis[:, 2])
    eigs = np.zeros((3, 3))
    eigs[:, 0] = eig0
    eigs[:, 1] = eig1
    eigs[:, 2] = eig2
    return eigs, R


def test_check_directions():
    # Testing spherical angles for two principal coordinate axis
    angles = [(0, 0)]  # axis z
    sticks = _check_directions(angles)
    assert_array_almost_equal(sticks, [[0, 0, 1]])
    angles = [(0, 90)]  # axis z again (phi can be anything it theta is zero)
    sticks = _check_directions(angles)
    assert_array_almost_equal(sticks, [[0, 0, 1]])
    angles = [(90, 0)]  # axis x
    sticks = _check_directions(angles)
    assert_array_almost_equal(sticks, [[1, 0, 0]])
    # Testing if directions are already given in cartesian coordinates
    angles = [(0, 0, 1)]
    sticks = _check_directions(angles)
    assert_array_almost_equal(sticks, [[0, 0, 1]])
    # Testing more than one direction simultaneously
    angles = np.array([[90, 0], [30, 0]])
    sticks = _check_directions(angles)
    ref_vec = [np.sin(np.pi*30/180), 0, np.cos(np.pi*30/180)]
    assert_array_almost_equal(sticks, [[1, 0, 0], ref_vec])
    # Testing directions not aligned to planes x = 0, y = 0, or z = 0
    the1 = 0
    phi1 = 90
    the2 = 30
    phi2 = 45
    angles = np.array([(the1, phi1), (the2, phi2)])
    sticks = _check_directions(angles)
    ref_vec1 = (np.sin(np.pi*the1/180) * np.cos(np.pi*phi1/180),
                np.sin(np.pi*the1/180) * np.sin(np.pi*phi1/180),
                np.cos(np.pi*the1/180))
    ref_vec2 = (np.sin(np.pi*the2/180) * np.cos(np.pi*phi2/180),
                np.sin(np.pi*the2/180) * np.sin(np.pi*phi2/180),
                np.cos(np.pi*the2/180))
    assert_array_almost_equal(sticks, [ref_vec1, ref_vec2])


def test_sticks_and_ball():
    d = 0.0015
    S, sticks = sticks_and_ball(gtab, d=d, S0=1, angles=[(0, 0), ],
                                fractions=[100], snr=None)
    assert_array_equal(sticks, [[0, 0, 1]])
    S_st = SingleTensor(gtab, 1, evals=[d, 0, 0], evecs=[[0, 0, 0],
                                                         [0, 0, 0],
                                                         [1, 0, 0]])
    assert_array_almost_equal(S, S_st)


def test_single_tensor():
    evals = np.array([1.4, .35, .35]) * 10 ** (-3)
    evecs = np.eye(3)
    S = SingleTensor(gtab, 100, evals, evecs, snr=None)
    assert_array_almost_equal(S[gtab.b0s_mask], 100)
    assert_(np.mean(S[~gtab.b0s_mask]) < 100)

    from dipy.reconst.dti import TensorModel
    m = TensorModel(gtab)
    t = m.fit(S)

    assert_array_almost_equal(t.fa, 0.707, decimal=3)


def test_multi_tensor():
    sphere = get_sphere('symmetric724')
    vertices = sphere.vertices
    mevals = np.array(([0.0015, 0.0003, 0.0003],
                       [0.0015, 0.0003, 0.0003]))
    e0 = np.array([np.sqrt(2) / 2., np.sqrt(2) / 2., 0])
    e1 = np.array([0, np.sqrt(2) / 2., np.sqrt(2) / 2.])
    mevecs = [all_tensor_evecs(e0), all_tensor_evecs(e1)]
    # odf = multi_tensor_odf(vertices, [0.5, 0.5], mevals, mevecs)
    # assert_(odf.shape == (len(vertices),))
    # assert_(np.all(odf <= 1) & np.all(odf >= 0))

    fimg, fbvals, fbvecs = get_data('small_101D')
    bvals, bvecs = read_bvals_bvecs(fbvals, fbvecs)
    gtab = gradient_table(bvals, bvecs)

    s1 = single_tensor(gtab, 100, mevals[0], mevecs[0], snr=None)
    s2 = single_tensor(gtab, 100, mevals[1], mevecs[1], snr=None)

    Ssingle = 0.5*s1 + 0.5*s2

    S, sticks = MultiTensor(gtab, mevals, S0=100, angles=[(90, 45), (45, 90)],
                            fractions=[50, 50], snr=None)

    assert_array_almost_equal(S, Ssingle)


def test_snr():
    np.random.seed(1978)

    s = single_tensor(gtab)

    # For reasonably large SNR, var(signal) ~= sigma**2, where sigma = 1/SNR
    for snr in [5, 10, 20]:
        sigma = 1.0 / snr
        for j in range(1000):
            s_noise = add_noise(s, snr, 1, noise_type='rician')

        assert_array_almost_equal(np.var(s_noise - s), sigma ** 2, decimal=2)


def test_all_tensor_evecs():
    e0 = np.array([1/np.sqrt(2), 1/np.sqrt(2), 0])

    # Vectors are returned column-wise!
    desired = np.array([[1/np.sqrt(2), 1/np.sqrt(2), 0],
                        [-1/np.sqrt(2), 1/np.sqrt(2), 0],
                        [0, 0, 1]]).T

    assert_array_almost_equal(all_tensor_evecs(e0), desired)


def test_kurtosis_elements():
    """ Testing symmetry of the elements of the KT

    As an 4th order tensor, KT has 81 elements. However, due to diffusion
    symmetry the KT is fully characterized by 15 independent elements. This
    test checks for this property.
    """
    # two fiber not aligned to planes x = 0, y = 0, or z = 0
    mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087],
                       [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]])
    angles = [(80, 10), (80, 10), (20, 30), (20, 30)]
    fie = 0.49  # intra axonal water fraction
    frac = [fie * 50, (1-fie) * 50, fie * 50, (1-fie) * 50]
    sticks = _check_directions(angles)
    mD = np.zeros((len(frac), 3, 3))
    for i in range(len(frac)):
        R = all_tensor_evecs(sticks[i])
        mD[i] = np.dot(np.dot(R, np.diag(mevals[i])), R.T)

    # compute global DT
    D = np.zeros((3, 3))
    for i in range(len(frac)):
        D = D + frac[i]*mD[i]

    # compute voxel's MD
    MD = (D[0][0] + D[1][1] + D[2][2]) / 3

    # Reference dictionary with the 15 independent elements.
    # Note: The multiplication of the indexes (i+1) * (j+1) * (k+1) * (l+1)
    # for of an elements is only equal to this multiplication for another
    # element if an only if the element corresponds to an symmetry element.
    # Thus indexes multiplication is used as key of the reference dictionary
    kt_ref = {1: kurtosis_element(mD, frac, 0, 0, 0, 0),
              16: kurtosis_element(mD, frac, 1, 1, 1, 1),
              81: kurtosis_element(mD, frac, 2, 2, 2, 2),
              2: kurtosis_element(mD, frac, 0, 0, 0, 1),
              3: kurtosis_element(mD, frac, 0, 0, 0, 2),
              8: kurtosis_element(mD, frac, 0, 1, 1, 1),
              24: kurtosis_element(mD, frac, 1, 1, 1, 2),
              27: kurtosis_element(mD, frac, 0, 2, 2, 2),
              54: kurtosis_element(mD, frac, 1, 2, 2, 2),
              4: kurtosis_element(mD, frac, 0, 0, 1, 1),
              9: kurtosis_element(mD, frac, 0, 0, 2, 2),
              36: kurtosis_element(mD, frac, 1, 1, 2, 2),
              6: kurtosis_element(mD, frac, 0, 0, 1, 2),
              12: kurtosis_element(mD, frac, 0, 1, 1, 2),
              18: kurtosis_element(mD, frac, 0, 1, 2, 2)}

    # Testing all 81 possible elements
    xyz = [0, 1, 2]
    for i in xyz:
        for j in xyz:
            for k in xyz:
                for l in xyz:
                    key = (i+1) * (j+1) * (k+1) * (l+1)
                    assert_almost_equal(kurtosis_element(mD, frac, i, k, j, l),
                                        kt_ref[key])
                    # Testing optional funtion inputs
                    assert_almost_equal(kurtosis_element(mD, frac, i, k, j, l),
                                        kurtosis_element(mD, frac, i, k, j, l,
                                                         D, MD))


def test_DKI_simulations_aligned_fibers():
    """
    Testing DKI simulations when aligning the same fiber to different axis.

    If biological parameters don't change, kt[0] of a fiber aligned to axis x
    has to be equal to kt[1] of a fiber aligned to the axis y and equal to
    kt[2] of a fiber aligned to axis z. The same is applicable for dt
    """
    # Defining parameters based on Neto Henriques et al., 2015. NeuroImage 111
    mevals = np.array([[0.00099, 0, 0],               # Intra-cellular
                       [0.00226, 0.00087, 0.00087]])  # Extra-cellular
    frac = [49, 51]  # Compartment volume fraction
    # axis x
    angles = [(90, 0), (90, 0)]
    signal_fx, dt_fx, kt_fx = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                               fractions=frac)
    # axis y
    angles = [(90, 90), (90, 90)]
    signal_fy, dt_fy, kt_fy = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                               fractions=frac)
    # axis z
    angles = [(0, 0), (0, 0)]
    signal_fz, dt_fz, kt_fz = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                               fractions=frac)

    assert_array_equal([kt_fx[0], kt_fx[1], kt_fx[2]],
                       [kt_fy[1], kt_fy[0], kt_fy[2]])
    assert_array_equal([kt_fx[0], kt_fx[1], kt_fx[2]],
                       [kt_fz[2], kt_fz[0], kt_fz[1]])

    assert_array_equal([dt_fx[0], dt_fx[2], dt_fx[5]],
                       [dt_fy[2], dt_fy[0], dt_fy[5]])
    assert_array_equal([dt_fx[0], dt_fx[2], dt_fx[5]],
                       [dt_fz[5], dt_fz[0], dt_fz[2]])

    # testing S signal along axis x, y and z
    bvals = np.array([0, 0, 0, 1000, 1000, 1000, 2000, 2000, 2000])
    bvecs = np.asarray([[1, 0, 0], [0, 1, 0], [0, 0, 1],
                        [1, 0, 0], [0, 1, 0], [0, 0, 1],
                        [1, 0, 0], [0, 1, 0], [0, 0, 1]])
    gtab_axis = gradient_table(bvals, bvecs)
    # axis x
    S_fx = DKI_signal(gtab_axis, dt_fx, kt_fx, S0=100)
    assert_array_almost_equal(S_fx[0:3], [100, 100, 100])  # test S f0r b=0
    # axis y
    S_fy = DKI_signal(gtab_axis, dt_fy, kt_fy, S0=100)
    assert_array_almost_equal(S_fy[0:3], [100, 100, 100])  # test S f0r b=0
    # axis z
    S_fz = DKI_signal(gtab_axis, dt_fz, kt_fz, S0=100)
    assert_array_almost_equal(S_fz[0:3], [100, 100, 100])  # test S f0r b=0

    # test S for b = 1000
    assert_array_almost_equal([S_fx[3], S_fx[4], S_fx[5]],
                              [S_fy[4], S_fy[3], S_fy[5]])
    assert_array_almost_equal([S_fx[3], S_fx[4], S_fx[5]],
                              [S_fz[5], S_fz[3], S_fz[4]])
    # test S for b = 2000
    assert_array_almost_equal([S_fx[6], S_fx[7], S_fx[8]],
                              [S_fy[7], S_fy[6], S_fy[8]])
    assert_array_almost_equal([S_fx[6], S_fx[7], S_fx[8]],
                              [S_fz[8], S_fz[6], S_fz[7]])


def test_DKI_crossing_fibers_simulations():
    """ Testing DKI simulations of a crossing fiber
    """
    # two fiber not aligned to planes x = 0, y = 0, or z = 0
    mevals = np.array([[0.00099, 0, 0], [0.00226, 0.00087, 0.00087],
                       [0.00099, 0, 0], [0.00226, 0.00087, 0.00087]])
    angles = [(80, 10), (80, 10), (20, 30), (20, 30)]
    fie = 0.49
    frac = [fie*50, (1 - fie)*50, fie*50, (1 - fie)*50]
    signal, dt, kt = multi_tensor_dki(gtab_2s, mevals, angles=angles,
                                      fractions=frac, snr=None)
    # in this simulations dt and kt cannot have zero elements
    for i in range(len(dt)):
        assert dt[i] != 0
    for i in range(len(kt)):
        assert kt[i] != 0

    # test S, dt and kt relative to the expected values computed from another
    # DKI package - UDKI (Neto Henriques et al., 2015)
    dt_ref = [1.0576161e-3, 0.1292542e-3, 0.4786179e-3,
              0.2667081e-3, 0.1136643e-3, 0.9888660e-3]
    kt_ref = [2.3529944, 0.8226448, 2.3011221, 0.2017312, -0.0437535,
              0.0404011, 0.0355281, 0.2449859, 0.2157668, 0.3495910,
              0.0413366, 0.3461519, -0.0537046, 0.0133414, -0.017441]
    assert_array_almost_equal(dt, dt_ref)
    assert_array_almost_equal(kt, kt_ref)
    assert_array_almost_equal(signal,
                              DKI_signal(gtab_2s, dt_ref, kt_ref, S0=100,
                                         snr=None),
                              decimal=5)


if __name__ == "__main__":

    test_multi_tensor()