This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/tracking/tests/test_life.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
import os
import os.path as op

import numpy as np
import numpy.testing as npt
import numpy.testing.decorators as dec
import scipy.sparse as sps
import scipy.linalg as la

import nibabel as nib

import dipy.tracking.life as life
import dipy.tracking.eudx as edx
import dipy.core.sphere as dps
import dipy.core.gradients as dpg
import dipy.data as dpd
import dipy.core.optimize as opt
import dipy.core.ndindex as nd
import dipy.core.gradients as grad
import dipy.reconst.dti as dti

THIS_DIR = op.dirname(__file__)

def test_streamline_gradients():
    streamline = [[1, 2, 3], [4, 5, 6], [5, 6, 7], [8, 9, 10]]
    grads = np.array([[3, 3, 3], [2, 2, 2], [2, 2, 2], [3, 3, 3]])
    npt.assert_array_equal(life.streamline_gradients(streamline), grads)


def test_streamline_tensors():
    # Small streamline
    streamline = [[1, 2, 3], [4, 5, 3], [5, 6, 3]]
    # Non-default eigenvalues:
    evals = [0.0012, 0.0006, 0.0004]
    streamline_tensors = life.streamline_tensors(streamline, evals=evals)
    npt.assert_array_almost_equal(streamline_tensors[0],
                                  np.array([[ 0.0009,  0.0003,  0.    ],
                                            [ 0.0003,  0.0009,  0.    ],
                                            [ 0.    ,  0.    ,  0.0004]]))

    
    # Get the eigenvalues/eigenvectors:
    eigvals, eigvecs = la.eig(streamline_tensors[0])
    eigvecs = eigvecs[np.argsort(eigvals)[::-1]]
    eigvals = eigvals[np.argsort(eigvals)[::-1]]

    npt.assert_array_almost_equal(eigvals,
                                  np.array([ 0.0012, 0.0006, 0.0004]))

    npt.assert_array_almost_equal(eigvecs[0],
                                  np.array([0.70710678, -0.70710678, 0.]))
    # Another small streamline
    streamline = [[1, 0, 0], [2, 0, 0], [3, 0, 0]]
    streamline_tensors = life.streamline_tensors(streamline, evals=evals)

    for t in streamline_tensors:
        eigvals, eigvecs = la.eig(t)
        eigvecs = eigvecs[np.argsort(eigvals)[::-1]]
        eigvals = eigvals[np.argsort(eigvals)[::-1]]
        # This one has no rotations - all tensors are simply the canonical:
        npt.assert_almost_equal(np.rad2deg(np.arccos(
            np.dot(eigvecs[0], [1, 0, 0]))), 0)
        npt.assert_almost_equal(np.rad2deg(np.arccos(
            np.dot(eigvecs[1], [0, 1, 0]))), 0)
        npt.assert_almost_equal(np.rad2deg(np.arccos(
            np.dot(eigvecs[2], [0, 0, 1]))), 0)


def test_streamline_signal():
    data_file, bval_file, bvec_file = dpd.get_data('small_64D')
    gtab = dpg.gradient_table(bval_file, bvec_file)
    evals = [0.0015, 0.0005, 0.0005]
    streamline1 = [[[1, 2, 3], [4, 5, 3], [5, 6, 3], [6, 7, 3]],
           [[1, 2, 3], [4, 5, 3], [5, 6, 3]]]

    sig1 = [life.streamline_signal(s, gtab, evals) for s in streamline1]

    streamline2 = [[[1, 2, 3], [4, 5, 3], [5, 6, 3], [6, 7, 3]]]

    sig2 = [life.streamline_signal(s, gtab, evals) for s in streamline2]

    npt.assert_array_equal(streamline2[0], streamline1[0])


def test_voxel2streamline():
    streamline = [[[1, 2, 3], [4, 5, 3], [5, 6, 3], [6, 7, 3]],
          [[1, 2, 3], [4, 5, 3], [5, 6, 3]]]
    affine = np.eye(4)
    v2f, v2fn = life.voxel2streamline(streamline, False, affine)
    npt.assert_equal(v2f, {0:[0,1], 1:[0,1], 2:[0,1], 3:[0]})
    npt.assert_equal(v2fn, {0: {0:[0], 1:[1], 2:[2], 3:[3]},
                            1: {0:[0], 1:[1], 2:[2]}})


def test_FiberModel_init():
    # Get some small amount of data:
    data_file, bval_file, bvec_file = dpd.get_data('small_64D')
    data_ni = nib.load(data_file)
    data = data_ni.get_data()
    data_aff = data_ni.get_affine()
    bvals, bvecs = (np.load(f) for f in (bval_file, bvec_file))
    gtab = dpg.gradient_table(bvals, bvecs)
    FM = life.FiberModel(gtab)

    streamline = [[[1, 2, 3], [4, 5, 3], [5, 6, 3], [6, 7, 3]],
          [[1, 2, 3], [4, 5, 3], [5, 6, 3]]]

    affine = np.eye(4)

    for sphere in [None, False, dpd.get_sphere('symmetric362')]:
        fiber_matrix, vox_coords = FM.setup(streamline, affine, sphere=sphere)
        npt.assert_array_equal(np.array(vox_coords),
                               np.array([[1, 2, 3], [4, 5, 3],
                                         [5, 6, 3], [6, 7, 3]]))

        npt.assert_equal(fiber_matrix.shape, (len(vox_coords)*64, len(streamline)))


def test_FiberFit():
    data_file, bval_file, bvec_file = dpd.get_data('small_64D')
    data_ni = nib.load(data_file)
    data = data_ni.get_data()
    data_aff = data_ni.get_affine()
    bvals, bvecs = (np.load(f) for f in (bval_file, bvec_file))
    gtab = dpg.gradient_table(bvals, bvecs)
    FM = life.FiberModel(gtab)
    evals = [0.0015, 0.0005, 0.0005]

    streamline = [[[1, 2, 3], [4, 5, 3], [5, 6, 3], [6, 7, 3]],
          [[1, 2, 3], [4, 5, 3], [5, 6, 3]]]

    fiber_matrix, vox_coords = FM.setup(streamline, None, evals)

    w = np.array([0.5, 0.5])
    sig = opt.spdot(fiber_matrix, w) + 1.0  # Add some isotropic stuff
    S0 = data[..., gtab.b0s_mask]
    rel_sig = data[..., ~gtab.b0s_mask]/data[..., gtab.b0s_mask]
    this_data = np.zeros((10, 10, 10, 64))
    this_data[vox_coords[:, 0], vox_coords[:, 1], vox_coords[:, 2]] =\
        (sig.reshape((4, 64)) *
         S0[vox_coords[:, 0], vox_coords[:, 1], vox_coords[:, 2]])

    # Grab some realistic S0 values:
    this_data = np.concatenate([data[..., gtab.b0s_mask], this_data], -1)

    fit = FM.fit(this_data, streamline)
    npt.assert_almost_equal(fit.predict()[1],
                            fit.data[1], decimal=-1)

    # Predict with an input GradientTable
    npt.assert_almost_equal(fit.predict(gtab)[1],
                            fit.data[1], decimal=-1)

    npt.assert_almost_equal(
        this_data[vox_coords[:, 0], vox_coords[:, 1], vox_coords[:, 2]],
        fit.data)

def test_fit_data():
    fdata, fbval, fbvec = dpd.get_data('small_25')
    gtab = grad.gradient_table(fbval, fbvec)
    ni_data = nib.load(fdata)
    data = ni_data.get_data()
    dtmodel = dti.TensorModel(gtab)
    dtfit = dtmodel.fit(data)
    sphere = dpd.get_sphere()
    peak_idx = dti.quantize_evecs(dtfit.evecs, sphere.vertices)
    eu = edx.EuDX(dtfit.fa.astype('f8'), peak_idx,
                  seeds=list(nd.ndindex(data.shape[:-1])),
                  odf_vertices=sphere.vertices, a_low=0)
    tensor_streamlines = [streamline for streamline in eu]
    life_model = life.FiberModel(gtab)
    life_fit = life_model.fit(data, tensor_streamlines)
    model_error = life_fit.predict() - life_fit.data
    model_rmse = np.sqrt(np.mean(model_error ** 2, -1))
    matlab_rmse, matlab_weights = dpd.matlab_life_results()
    # Lower error than the matlab implementation for these data:
    npt.assert_(np.median(model_rmse) < np.median(matlab_rmse))
    # And a moderate correlation with the Matlab implementation weights:
    npt.assert_(np.corrcoef(matlab_weights, life_fit.beta)[0, 1] > 0.68)