This file is indexed.

/usr/lib/python2.7/dist-packages/dipy/tracking/tests/test_markov.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
from __future__ import division, print_function, absolute_import

import numpy as np
from dipy.tracking import utils
from dipy.reconst.interpolate import NearestNeighborInterpolator
from dipy.tracking.markov import (BoundaryStepper, _closest_peak,
                                  FixedSizeStepper, MarkovIntegrator,
                                  markov_streamline, OutsideImage,
                                  ClosestDirectionTracker,
                                  ProbabilisticOdfWeightedTracker)
from dipy.core.sphere import HemiSphere, unit_octahedron
from numpy.testing import (assert_array_almost_equal, assert_array_equal,
                           assert_equal, assert_, assert_raises)


def test_BoundaryStepper():
    os = 1
    bi = BoundaryStepper(overstep=os)
    loc = np.array([.5, .5, .5])
    step = np.array([1, 1, 1]) / np.sqrt(3)
    assert_array_almost_equal(bi(loc, step), os * step + [1, 1, 1])
    assert_array_almost_equal(bi(loc, -step), -os * step)

    os = 2
    bi = BoundaryStepper((2, 3, 4), overstep=2)
    assert_array_almost_equal(bi(loc, step), os * step + [2, 2, 2])
    assert_array_almost_equal(bi(loc, -step), -os * step)

    loc = np.array([7.5, 7.5, 7.5])
    assert_array_almost_equal(bi(loc, step), os * step + [8, 8, 8])
    assert_array_almost_equal(bi(loc, -step), [6, 6, 6] - os * step)


def test_FixedSizeStepper():
    fsi = FixedSizeStepper(step_size=2.)
    loc = np.array([2, 3, 12])
    step = np.array([3, 2, 4]) / np.sqrt(3)
    assert_array_almost_equal(fsi(loc, step), loc + 2. * step)
    assert_array_almost_equal(fsi(loc, -step), loc - 2. * step)


def test_markov_streamline():

    east = np.array([1, 0, 0])

    class MoveEastWest(object):
        def get_direction(self, location, prev_step):
            if np.any(location < 0):
                raise OutsideImage
            elif np.any(location > 10.):
                return None
            if np.dot(prev_step, east) >= 0:
                return east
            else:
                return -east

    seed = np.array([5.2, 0, 0])
    first_step = east
    dir_getter = MoveEastWest()
    stepper = FixedSizeStepper(.5)

    # The streamline terminates when it goes past (10, 0, 0). (10.2, 0, 0)
    # should be the last point in the streamline
    streamline = markov_streamline(dir_getter.get_direction, stepper,
                                   seed, first_step, 100)
    expected = np.zeros((11, 3))
    expected[:, 0] = np.linspace(5.2, 10.2, 11)
    assert_array_almost_equal(streamline, expected)

    # OutsideImage gets raised when the streamline points become negative
    # the streamline should end, and the negative points should not be part
    # of the streamline
    first_step = -east
    streamline = markov_streamline(dir_getter.get_direction, stepper,
                                   seed, first_step, 100)
    expected = np.zeros((11, 3))
    expected[:, 0] = np.linspace(5.2, 0.2, 11)
    assert_array_almost_equal(streamline, expected)


def test_MarkovIntegrator():

    class KeepGoing(MarkovIntegrator):
        def _next_step(self, location, prev_step):
            if prev_step is None:
                return np.array([[1., 0, 0],
                                 [0, 1., 0],
                                 [0, 0., 1]])
            if not self._mask[location]:
                return None
            else:
                return prev_step

    data = np.ones((10, 10, 10, 65))
    data_interp = NearestNeighborInterpolator(data, (1, 1, 1))

    seeds = [np.array([5.2, 5.2, 5.2])]
    stepper = FixedSizeStepper(.5)
    mask = np.ones((10, 10, 10), 'bool')
    gen = KeepGoing(model=None, interpolator=data_interp, mask=mask,
                    take_step=stepper, angle_limit=0., seeds=seeds)
    streamlines = list(gen)
    assert_equal(len(streamlines), 3)

    expected = np.zeros((20, 3))
    for i in range(3):
        expected[:] = 5.2
        expected[:, i] = np.arange(.2, 10, .5)
        assert_array_almost_equal(streamlines[i], expected)

    # Track only the first (largest) peak for each seed
    gen = KeepGoing(model=None, interpolator=data_interp, mask=mask,
                    take_step=stepper, angle_limit=0., seeds=seeds,
                    max_cross=1)
    streamlines = list(gen)
    assert_equal(len(streamlines), 1)

    expected = np.zeros((20, 3))
    expected[:] = 5.2
    expected[:, 0] = np.arange(.2, 10, .5)
    assert_array_almost_equal(streamlines[0], expected)

    mask = np.ones((20, 20, 20), 'bool')
    gen = KeepGoing(model=None, interpolator=data_interp, mask=mask,
                    take_step=stepper, angle_limit=0., seeds=seeds,
                    max_cross=1, mask_voxel_size=(.5, .5, .5))
    streamlines = list(gen)
    assert_equal(len(streamlines), 1)
    assert_array_almost_equal(streamlines[0], expected)

    # Test tracking with affine
    affine = np.eye(4)
    affine[:3, :] = np.random.random((3, 4)) - .5

    seeds = [np.dot(affine[:3, :3], seeds[0] - .5) + affine[:3, 3]]
    sl_affine = KeepGoing(model=None, interpolator=data_interp, mask=mask,
                    take_step=stepper, angle_limit=0., seeds=seeds,
                    max_cross=1, mask_voxel_size=(.5, .5, .5), affine=affine)

    default = np.eye(4)
    default[:3, 3] = .5
    sl_default = list(utils.move_streamlines(sl_affine, default, affine))

    assert_equal(len(sl_default), 1)
    assert_array_almost_equal(sl_default[0], expected)


def test_closest_peak():
    peak_values = np.array([1, .9, .8, .7, .6, .2, .1])
    peak_points = np.array([[1., 0., 0.],
                            [0., .9, .1],
                            [0., 1., 0.],
                            [.9, .1, 0.],
                            [0., 0., 1.],
                            [1., 1., 0.],
                            [0., 1., 1.]])
    norms = np.sqrt((peak_points * peak_points).sum(-1))
    peak_points = peak_points / norms[:, None]

    prev = np.array([1, -.9, 0])
    prev = prev / np.sqrt(np.dot(prev, prev))
    cp = _closest_peak(peak_points, prev, 0.)
    assert_array_equal(cp, peak_points[0])
    cp = _closest_peak(peak_points, -prev, 0.)
    assert_array_equal(cp, -peak_points[0])


def test_ClosestDirectionTracker():
    class MyModel(object):
        def fit(self, data):
            return MyFit()

    class MyFit(object):
        pass

    class MyDirectionFinder(object):

        directions = np.array([[1., 0, 0],
                               [0, 1., 0],
                               [0, 0., 1]])

        def __call__(self, fit):
            return self.directions

    data = np.ones((10, 10, 10, 65))
    data_interp = NearestNeighborInterpolator(data, (1, 1, 1))

    mask = np.ones((10, 10, 10), 'bool')
    mask[0, 0, 0] = False
    cdt = ClosestDirectionTracker(model=MyModel(), interpolator=data_interp,
                                  mask=mask, take_step=None,
                                  angle_limit=90., seeds=None)

    # We're going to use a silly set of directions for the test
    cdt._get_directions = MyDirectionFinder()

    prev_step = np.array([[.9, .1, .1],
                          [.1, .9, .1],
                          [.1, .1, .9]])
    prev_step /= np.sqrt((prev_step * prev_step).sum(-1))[:, None]
    a, b, c = prev_step
    assert_array_equal(cdt._next_step([1., 1., 1.], a), [1, 0, 0])
    assert_array_equal(cdt._next_step([1., 1., 1.], b), [0, 1, 0])
    assert_array_equal(cdt._next_step([1., 1., 1.], c), [0, 0, 1])
    # Assert raises outside image
    assert_raises(OutsideImage, cdt._next_step, [-1., 1., 1.], c)
    # Returns None when mask is False
    assert_equal(cdt._next_step([0, 0, 0], c), None)

    # Test Angle limit
    cdt = ClosestDirectionTracker(model=MyModel(), interpolator=data_interp,
                                  mask=mask, take_step=None,
                                  angle_limit=45, seeds=None)

    # We're going to use a silly set of directions for the test
    cdt._get_directions = MyDirectionFinder()
    sq3 = np.sqrt(3)
    a = np.array([sq3 / 2, 1. / 2, 0])
    b = np.array([1. / 2, sq3 / 2, 0])
    c = np.array([1, 1, 1]) / sq3

    assert_array_equal(cdt._next_step([1., 1., 1.], a), [1, 0, 0])
    assert_array_equal(cdt._next_step([1., 1., 1.], b), [0, 1, 0])
    assert_array_equal(cdt._next_step([1., 1., 1.], c), None)


def test_ProbabilisticOdfWeightedTracker():
    sphere = HemiSphere.from_sphere(unit_octahedron)

    # A simple image with three possible configurations, a vertical tract,
    # a horizontal tract and a crossing
    odf_list = [np.array([0., 0., 0.]),
                np.array([1., 0., 0.]),
                np.array([0., 1., 0.]),
                np.array([1., 1., 0.]),
                ]
    simple_image = np.array([[0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 3, 2, 2, 2, 0],
                             [0, 1, 0, 0, 0, 0],
                             [0, 1, 0, 0, 0, 0],
                             ])
    # Make the image 4d
    simple_image = simple_image[..., None, None]

    # Simple model and fit for this image
    class MyModel():
        def fit(self, data):
            return MyFit(data)

    class MyFit(object):
        def __init__(self, n):
            self.n = int(n)

        def odf(self, sphere):
            return odf_list[self.n]

    seeds = [np.array([1.5, 1.5, .5])] * 30
    model = MyModel()
    mask = np.ones([5, 6, 1], dtype="bool")
    stepper = FixedSizeStepper(1.)
    interpolator = NearestNeighborInterpolator(simple_image, (1, 1, 1))

    # These are the only two possible paths though the simple_image
    pwt = ProbabilisticOdfWeightedTracker(model, interpolator, mask,
                                          stepper, 90, seeds, sphere)
    expected = [np.array([[0.5, 1.5, 0.5],
                          [1.5, 1.5, 0.5],
                          [2.5, 1.5, 0.5],
                          [2.5, 2.5, 0.5],
                          [2.5, 3.5, 0.5],
                          [2.5, 4.5, 0.5],
                          [2.5, 5.5, 0.5]]),
                np.array([[0.5, 1.5, 0.5],
                          [1.5, 1.5, 0.5],
                          [2.5, 1.5, 0.5],
                          [3.5, 1.5, 0.5],
                          [4.5, 1.5, 0.5]])
                ]

    def allclose(x, y):
        return x.shape == y.shape and np.allclose(x, y)

    path = [False, False]
    for streamline in pwt:
        if allclose(streamline, expected[0]):
            path[0] = True
        elif allclose(streamline, expected[1]):
            path[1] = True
        else:
            raise AssertionError()
    assert_(all(path))

    # The first path is not possible if 90 degree turns are excluded
    pwt = ProbabilisticOdfWeightedTracker(model, interpolator, mask,
                                          stepper, 80, seeds, sphere)
    for streamline in pwt:
        assert_(np.allclose(streamline, expected[1]))