This file is indexed.

/usr/share/doc/dipy/examples/reconst_dsi_metrics.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
"""
===============================
Calculate DSI-based scalar maps
===============================

We show how to calculate two DSI-based scalar maps: return to origin 
probability (rtop) [Descoteaux2011]_ and mean square displacement (msd) 
[Wu2007]_, [Wu2008]_ on your dataset.

First import the necessary modules:
"""

import numpy as np
import matplotlib.pyplot as plt
from dipy.data import fetch_taiwan_ntu_dsi, read_taiwan_ntu_dsi
from dipy.reconst.dsi import DiffusionSpectrumModel

"""
Download and read the data for this tutorial.
"""

fetch_taiwan_ntu_dsi()
img, gtab = read_taiwan_ntu_dsi()

"""
img contains a nibabel Nifti1Image object (data) and gtab contains a GradientTable
object (gradient information e.g. b-values). For example to read the b-values
it is possible to write print(gtab.bvals).

Load the raw diffusion data and the affine.
"""

data = img.get_data()
affine = img.get_affine()
print('data.shape (%d, %d, %d, %d)' % data.shape)

"""
Instantiate the Model and apply it to the data.
"""

dsmodel = DiffusionSpectrumModel(gtab, qgrid_size=35, filter_width=18.5)

"""
Lets just use one slice only from the data.
"""

dataslice = data[30:70, 20:80, data.shape[2] / 2]

"""
Normalize the signal by the b0
"""

dataslice = dataslice / (dataslice[..., 0, None]).astype(np.float)

"""
Calculate the return to origin probability on the signal 
that corresponds to the integral of the signal.
"""

print('Calculating... rtop_signal')
rtop_signal = dsmodel.fit(dataslice).rtop_signal()

"""
Now we calculate the return to origin probability on the propagator, 
that corresponds to its central value. 
By default the propagator is divided by its sum in order to obtain a properly normalized pdf,
however this normalization changes the values of rtop, therefore in order to compare it
with the rtop previously calculated on the signal we turn the normalized parameter to false.
"""

print('Calculating... rtop_pdf')
rtop_pdf = dsmodel.fit(dataslice).rtop_pdf(normalized=False)

"""
In theory, these two measures must be equal, 
to show that we calculate the mean square error on this two measures.
"""

mse = np.sum((rtop_signal - rtop_pdf) ** 2) / rtop_signal.size
print("mse = %f" % mse)

""" 
mse = 0.000000

Leaving the normalized parameter to the default changes the values of the 
rtop but not the contrast between the voxels.
"""

print('Calculating... rtop_pdf_norm')
rtop_pdf_norm = dsmodel.fit(dataslice).rtop_pdf()

"""
Let's calculate the mean square displacement on the normalized propagator.
"""

print('Calculating... msd_norm')
msd_norm = dsmodel.fit(dataslice).msd_discrete()

"""
Turning the normalized parameter to false makes it possible to calculate 
the mean square displacement on the propagator without normalization.
"""

print('Calculating... msd')
msd = dsmodel.fit(dataslice).msd_discrete(normalized=False)

"""
Show the rtop images and save them in rtop.png.
"""

fig = plt.figure(figsize=(6, 6))
ax1 = fig.add_subplot(2, 2, 1, title='rtop_signal')
ax1.set_axis_off()
ind = ax1.imshow(rtop_signal.T, interpolation='nearest', origin='lower')
plt.colorbar(ind)
ax2 = fig.add_subplot(2, 2, 2, title='rtop_pdf_norm')
ax2.set_axis_off()
ind = ax2.imshow(rtop_pdf_norm.T, interpolation='nearest', origin='lower')
plt.colorbar(ind)
ax3 = fig.add_subplot(2, 2, 3, title='rtop_pdf')
ax3.set_axis_off()
ind = ax3.imshow(rtop_pdf.T, interpolation='nearest', origin='lower')
plt.colorbar(ind)
plt.savefig('rtop.png')

"""
.. figure:: rtop.png
   :align: center

   **Return to origin probability**.

Show the msd images and save them in msd.png. 
"""

fig = plt.figure(figsize=(7, 3))
ax1 = fig.add_subplot(1, 2, 1, title='msd_norm')
ax1.set_axis_off()
ind = ax1.imshow(msd_norm.T, interpolation='nearest', origin='lower')
plt.colorbar(ind)
ax2 = fig.add_subplot(1, 2, 2, title='msd')
ax2.set_axis_off()
ind = ax2.imshow(msd.T, interpolation='nearest', origin='lower')
plt.colorbar(ind)
plt.savefig('msd.png')

"""
.. figure:: msd.png
   :align: center

   **Mean square displacement**.

.. [Descoteaux2011] Descoteaux M. et. al , "Multiple q-shell diffusion 
					propagator imaging", Medical Image Analysis, vol 15,
					No. 4, p. 603-621, 2011.

.. [Wu2007] Wu Y. et al., "Hybrid diffusion imaging", NeuroImage, vol 36,
        	p. 617-629, 2007.

.. [Wu2008] Wu Y. et al., "Computation of Diffusion Function Measures
			in q -Space Using Magnetic Resonance Hybrid Diffusion Imaging",
			IEEE TRANSACTIONS ON MEDICAL IMAGING, vol. 27, No. 6, p. 858-865,
			2008

.. include:: ../links_names.inc

"""