This file is indexed.

/usr/share/doc/dipy/examples/sfm_tracking.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
"""
.. _sfm-track:

==================================================
Tracking with the Sparse Fascicle Model
==================================================

Tracking requires a per-voxel model. Here, the model is the Sparse Fascicle
Model, described in [Rokem2014]_. This model reconstructs the diffusion signal
as a combination of the signals from different fascicles (see also
:ref:`sfm-reconst`).

To begin, we read the Stanford HARDI data-set into memory:
"""

from dipy.data import read_stanford_labels
hardi_img, gtab, labels_img = read_stanford_labels()
data = hardi_img.get_data()
labels = labels_img.get_data()
affine = hardi_img.get_affine()

"""
This dataset provides a label map (generated using Freesurfer), in which the
white matter voxels are labeled as either 1 or 2:
"""

white_matter = (labels == 1) | (labels == 2)

"""
The first step in tracking is generating a model from which tracking directions
can be extracted in every voxel.

For the SFM, this requires first that we define a canonical response function
that will be used to deconvolve the signal in every voxel
"""

from dipy.reconst.csdeconv import auto_response
response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)


"""
We initialize an SFM model object, using this response function and using the
default sphere (362  vertices, symmetrically distributed on the surface of the
sphere):
"""

from dipy.data import get_sphere
sphere = get_sphere()
from dipy.reconst import sfm
sf_model = sfm.SparseFascicleModel(gtab, sphere=sphere,
                                   l1_ratio=0.5, alpha=0.001,
                                   response=response[0])

"""
We fit this model to the data in each voxel in the white-matter mask, so that
we can use these directions in tracking:
"""

from dipy.direction.peaks import peaks_from_model

pnm = peaks_from_model(sf_model, data, sphere,
                       relative_peak_threshold=.5,
                       min_separation_angle=25,
                       mask=white_matter,
                       parallel=True
                       )

"""
A ThresholdTissueClassifier object is used to segment the data to track only
through areas in which the Generalized Fractional Anisotropy (GFA) is
sufficiently high.
"""

from dipy.tracking.local import ThresholdTissueClassifier
classifier = ThresholdTissueClassifier(pnm.gfa, .25)

"""
Tracking will be started from a set of seeds evenly distributed in the white
matter:
"""

from dipy.tracking import utils
seeds = utils.seeds_from_mask(white_matter, density=[2, 2, 2], affine=affine)

"""
For the sake of brevity, we will take only the first 1000 seeds, generating
only 1000 streamlines. Remove this line to track from many more points in all of
the white matter
"""

seeds = seeds[:1000]

"""
We now have the necessary components to construct a tracking pipeline and
execute the tracking
"""

from dipy.tracking.local import LocalTracking
streamlines = LocalTracking(pnm, classifier, seeds, affine, step_size=.5)

streamlines = list(streamlines)

"""
Next, we will create a visualization of these streamlines, relative to this
subject's T1-weighted anatomy:
"""

from dipy.viz import fvtk
from dipy.viz.colormap import line_colors
from dipy.data import read_stanford_t1
from dipy.tracking.utils import move_streamlines
from numpy.linalg import inv
t1 = read_stanford_t1()
t1_data = t1.get_data()
t1_aff = t1.get_affine()
color = line_colors(streamlines)

"""
To speed up visualization, we will select a random sub-set of streamlines to
display. This is particularly important, if you track from seeds throughout the
entire white matter, generating many streamlines. In this case, for
demonstration purposes, we subselect 900 streamlines.
"""

from dipy.tracking.streamline import select_random_set_of_streamlines
plot_streamlines = select_random_set_of_streamlines(streamlines, 900)

streamlines_actor = fvtk.streamtube(
    list(move_streamlines(plot_streamlines, inv(t1_aff))),
    line_colors(streamlines), linewidth=0.1)

vol_actor = fvtk.slicer(t1_data)

vol_actor.display(40, None, None)
vol_actor2 = vol_actor.copy()
vol_actor2.display(None, None, 35)

ren = fvtk.ren()
fvtk.add(ren, streamlines_actor)
fvtk.add(ren, vol_actor)
fvtk.add(ren, vol_actor2)

fvtk.record(ren, n_frames=1, out_path='sfm_streamlines.png',
            size=(800, 800))

"""
.. figure:: sfm_streamlines.png
   :align: center

   **Sparse Fascicle Model tracks**

Finally, we can save these streamlines to a 'trk' file, for use in other
software, or for further analysis.
"""

from dipy.io.trackvis import save_trk
save_trk("sfm_detr.trk", streamlines, affine, labels.shape)

"""
References
----------

.. [Rokem2014] Ariel Rokem, Jason D. Yeatman, Franco Pestilli, Kendrick
   N. Kay, Aviv Mezer, Stefan van der Walt, Brian A. Wandell
   (2014). Evaluating the accuracy of diffusion MRI models in white
   matter. http://arxiv.org/abs/1411.0721

"""