This file is indexed.

/usr/share/doc/dipy/examples/tracking_tissue_classifier.py is in python-dipy 0.10.1-1.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
"""
=================================================
Using Various Tissue Classifiers for Tractography
=================================================
The tissue classifier determines if the tracking stops or continues at each
tracking position. The tracking stops when it reaches an ending region
(e.g. low FA, gray matter or corticospinal fluid regions) or exits the image
boundaries. The tracking also stops if the direction getter has no direction
to follow.

Each tissue classifier determines if the stopping is 'valid' or
'invalid'. A streamline is 'valid' when the tissue classifier determines if
the streamline stops in a position classified as 'ENDPOINT' or 'OUTSIDEIMAGE'.
A streamline is 'invalid' when it stops in a position classified as
'TRACKPOINT' or 'INVALIDPOINT'. These conditions are described below. The
'LocalTracking' generator can be set to output all generated streamlines
or only the 'valid' ones.

This example is an extension of the
:ref:`example_deterministic_fiber_tracking` example. We begin by loading the
data, fitting a Constrained Spherical Deconvolution (CSD) reconstruction
model and creating the maximum deterministic direction getter.
"""

import numpy as np

from dipy.data import read_stanford_labels, default_sphere
from dipy.direction import DeterministicMaximumDirectionGetter
from dipy.io.trackvis import save_trk
from dipy.reconst.csdeconv import (ConstrainedSphericalDeconvModel,
                                   auto_response)
from dipy.tracking.local import LocalTracking
from dipy.tracking import utils
from dipy.viz import fvtk
from dipy.viz.colormap import line_colors

ren = fvtk.ren()

hardi_img, gtab, labels_img = read_stanford_labels()
data = hardi_img.get_data()
labels = labels_img.get_data()
affine = hardi_img.get_affine()

seed_mask = labels == 2
white_matter = (labels == 1) | (labels == 2)
seeds = utils.seeds_from_mask(seed_mask, density=2, affine=affine)

response, ratio = auto_response(gtab, data, roi_radius=10, fa_thr=0.7)
csd_model = ConstrainedSphericalDeconvModel(gtab, response)
csd_fit = csd_model.fit(data, mask=white_matter)

dg = DeterministicMaximumDirectionGetter.from_shcoeff(csd_fit.shm_coeff,
                                                      max_angle=30.,
                                                      sphere=default_sphere)

"""
Threshold Tissue Classifier
---------------------------
A scalar map can be used to define where the tracking stops. The threshold
tissue classifier uses a scalar map to stop the tracking whenever the
interpolated scalar value is lower than a fixed threshold. Here, we show
an example using the fractional anisotropy (FA) map of the DTI model.
The threshold tissue classifier uses a trilinear interpolation at the
tracking position.

**Parameters**

- metric_map: numpy array [:, :, :]
- threshold: float

**Stopping criterion**

- 'ENDPOINT': metric_map < threshold,
- 'OUTSIDEIMAGE': tracking point outside of metric_map,
- 'TRACKPOINT': stop because no direction is available,
- 'INVALIDPOINT': N/A.
"""

import matplotlib.pyplot as plt
import dipy.reconst.dti as dti
from dipy.reconst.dti import fractional_anisotropy
from dipy.tracking.local import ThresholdTissueClassifier

tensor_model = dti.TensorModel(gtab)
tenfit = tensor_model.fit(data, mask=labels > 0)
FA = fractional_anisotropy(tenfit.evals)

threshold_classifier = ThresholdTissueClassifier(FA, .2)

fig = plt.figure()
mask_fa = FA.copy()
mask_fa[mask_fa < 0.2] = 0
plt.xticks([])
plt.yticks([])
plt.imshow(mask_fa[:, :, data.shape[2] / 2].T, cmap='gray', origin='lower',
           interpolation='nearest')
fig.tight_layout()
fig.savefig('threshold_fa.png')

"""
.. figure:: threshold_fa.png
 :align: center

 **Thresholded fractional anisotropy map.**
"""

all_streamlines_threshold_classifier = LocalTracking(dg,
                                                     threshold_classifier,
                                                     seeds,
                                                     affine,
                                                     step_size=.5,
                                                     return_all=True)

save_trk("deterministic_threshold_classifier_all.trk",
         all_streamlines_threshold_classifier,
         affine,
         labels.shape)

streamlines = [sl for sl in all_streamlines_threshold_classifier]

fvtk.clear(ren)
fvtk.add(ren, fvtk.line(streamlines, line_colors(streamlines)))
fvtk.record(ren, out_path='all_streamlines_threshold_classifier.png',
            size=(600, 600))

"""
.. figure:: all_streamlines_threshold_classifier.png
 :align: center

 **Deterministic tractography using a thresholded fractional anisotropy.**
"""


"""
Binary Tissue Classifier
------------------------
A binary mask can be used to define where the tracking stops. The binary
tissue classifier stops the tracking whenever the tracking position is outside
the mask. Here, we show how to obtain the binary tissue classifier from
the white matter mask defined above. The binary tissue classifier uses a
nearest-neighborhood interpolation at the tracking position.

**Parameters**

- mask: numpy array [:, :, :]

**Stopping criterion**

- 'ENDPOINT': mask = 0
- 'OUTSIDEIMAGE': tracking point outside of mask
- 'TRACKPOINT': no direction is available
- 'INVALIDPOINT': N/A
"""

from dipy.tracking.local import BinaryTissueClassifier

binary_classifier = BinaryTissueClassifier(white_matter)

fig = plt.figure()
plt.xticks([])
plt.yticks([])
fig.tight_layout()
plt.imshow(white_matter[:, :, data.shape[2] / 2].T, cmap='gray', origin='lower',
           interpolation='nearest')
fig.savefig('white_matter_mask.png')

"""
.. figure:: white_matter_mask.png
 :align: center

 **White matter binary mask.**
"""

all_streamlines_binary_classifier = LocalTracking(dg,
                                                  binary_classifier,
                                                  seeds,
                                                  affine,
                                                  step_size=.5,
                                                  return_all=True)

save_trk("deterministic_binary_classifier_all.trk",
         all_streamlines_binary_classifier,
         affine,
         labels.shape)

streamlines = [sl for sl in all_streamlines_binary_classifier]
fvtk.clear(ren)
fvtk.add(ren, fvtk.line(streamlines, line_colors(streamlines)))
fvtk.record(ren, out_path='all_streamlines_binary_classifier.png',
            size=(600, 600))

"""
.. figure:: all_streamlines_binary_classifier.png
 :align: center

 **Deterministic tractography using a binary white matter mask.**
"""

"""
ACT Tissue Classifier
---------------------
Anatomically-constrained tractography (ACT) [Smith2012]_ uses information from
anatomical images to determine when the tractography stops. The 'include_map'
defines when the streamline reached a 'valid' stopping region (e.g. gray
matter partial volume estimation (PVE) map) and the 'exclude_map' defines when
the streamline reached an 'invalid' stopping region (e.g. corticospinal fluid
PVE map). The background of the anatomical image should be added to the
'include_map' to keep streamlines exiting the brain (e.g. through the
brain stem). The ACT tissue classifier uses a trilinear interpolation
at the tracking position.

**Parameters**

- include_map: numpy array [:, :, :],
- exclude_map: numpy array [:, :, :],

**Stopping criterion**

- 'ENDPOINT': include_map > 0.5,
- 'OUTSIDEIMAGE': tracking point outside of include_map or exclude_map,
- 'TRACKPOINT': no direction is available,
- 'INVALIDPOINT': exclude_map > 0.5.
"""

from dipy.data import read_stanford_pve_maps
from dipy.tracking.local import ActTissueClassifier

img_pve_csf, img_pve_gm, img_pve_wm = read_stanford_pve_maps()

background = np.ones(img_pve_gm.shape)
background[(img_pve_gm.get_data() +
            img_pve_wm.get_data() +
            img_pve_csf.get_data()) > 0] = 0

include_map = img_pve_gm.get_data()
include_map[background > 0] = 1
exclude_map = img_pve_csf.get_data()

act_classifier = ActTissueClassifier(include_map, exclude_map)

fig = plt.figure()
plt.subplot(121)
plt.xticks([])
plt.yticks([])
plt.imshow(include_map[:, :, data.shape[2] / 2].T, cmap='gray', origin='lower',
           interpolation='nearest')
plt.subplot(122)
plt.xticks([])
plt.yticks([])
plt.imshow(exclude_map[:, :, data.shape[2] / 2].T, cmap='gray', origin='lower',
           interpolation='nearest')
fig.tight_layout()
fig.savefig('act_maps.png')

"""
.. figure:: act_maps.png
 :align: center

 **Include (left) and exclude (right) maps for ACT.**
"""

all_streamlines_act_classifier = LocalTracking(dg,
                                               act_classifier,
                                               seeds,
                                               affine,
                                               step_size=.5,
                                               return_all=True)

save_trk("deterministic_act_classifier_all.trk",
         all_streamlines_act_classifier,
         affine,
         labels.shape)

streamlines = [sl for sl in all_streamlines_act_classifier]

fvtk.clear(ren)
fvtk.add(ren, fvtk.line(streamlines, line_colors(streamlines)))
fvtk.record(ren, out_path='all_streamlines_act_classifier.png',
            size=(600, 600))

"""
.. figure:: all_streamlines_act_classifier.png
 :align: center

 **Deterministic tractography using ACT stopping criterion.**
"""

valid_streamlines_act_classifier = LocalTracking(dg,
                                                 act_classifier,
                                                 seeds,
                                                 affine,
                                                 step_size=.5,
                                                 return_all=False)

save_trk("deterministic_act_classifier_valid.trk",
         valid_streamlines_act_classifier,
         affine,
         labels.shape)

streamlines = [sl for sl in valid_streamlines_act_classifier]

fvtk.clear(ren)
fvtk.add(ren, fvtk.line(streamlines, line_colors(streamlines)))
fvtk.record(ren, out_path='valid_streamlines_act_classifier.png',
            size=(600, 600))

"""
.. figure:: valid_streamlines_act_classifier.png
 :align: center

 **Deterministic tractography using a anatomically-constrained tractography
 stopping criterion. Streamlines ending in gray matter region only.**
"""

"""
The threshold and binary tissue classifiers use respectively a scalar map and a
binary mask to stop the tracking. The ACT tissue classifier use partial volume
fraction (PVE) maps from an anatomical image to stop the tracking. Additionally,
the ACT tissue classifier determines if the tracking stopped in expected regions
(e.g. gray matter) and allows the user to get only streamlines stopping in those
regions.

Notes
------
Currently in ACT the proposed method that cuts streamlines going through
subcortical gray matter regions is not implemented. The backtracking technique
for streamlines reaching INVALIDPOINT is not implemented either.


References
----------

.. [Smith2012] Smith, R. E., Tournier, J.-D., Calamante, F., & Connelly, A.
    Anatomically-constrained tractography: Improved diffusion MRI
    streamlines tractography through effective use of anatomical
    information. NeuroImage, 63(3), 1924-1938, 2012.
"""