This file is indexed.

/usr/lib/python2.7/dist-packages/emcee/sampler.py is in python-emcee 2.1.0-5.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
#!/usr/bin/env python
# -*- coding: utf-8 -*-
"""
The base sampler class implementing various helpful functions.

"""

from __future__ import (division, print_function, absolute_import,
                        unicode_literals)

__all__ = ["Sampler"]

import numpy as np


class Sampler(object):
    """
    An abstract sampler object that implements various helper functions

    :param dim:
        The number of dimensions in the parameter space.

    :param lnpostfn:
        A function that takes a vector in the parameter space as input and
        returns the natural logarithm of the posterior probability for that
        position.

    :param args: (optional)
        A list of extra positional arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    :param kwargs: (optional)
        A list of extra keyword arguments for ``lnpostfn``. ``lnpostfn``
        will be called with the sequence ``lnpostfn(p, *args, **kwargs)``.

    """
    def __init__(self, dim, lnprobfn, args=[], kwargs={}):
        self.dim = dim
        self.lnprobfn = lnprobfn
        self.args = args
        self.kwargs = kwargs

        # This is a random number generator that we can easily set the state
        # of without affecting the numpy-wide generator
        self._random = np.random.mtrand.RandomState()

        self.reset()

    @property
    def random_state(self):
        """
        The state of the internal random number generator. In practice, it's
        the result of calling ``get_state()`` on a
        ``numpy.random.mtrand.RandomState`` object. You can try to set this
        property but be warned that if you do this and it fails, it will do
        so silently.

        """
        return self._random.get_state()

    @random_state.setter  # NOQA
    def random_state(self, state):
        """
        Try to set the state of the random number generator but fail silently
        if it doesn't work. Don't say I didn't warn you...

        """
        try:
            self._random.set_state(state)
        except:
            pass

    @property
    def acceptance_fraction(self):
        """
        The fraction of proposed steps that were accepted.

        """
        return self.naccepted / self.iterations

    @property
    def chain(self):
        """
        A pointer to the Markov chain.

        """
        return self._chain

    @property
    def flatchain(self):
        """
        Alias of ``chain`` provided for compatibility.

        """
        return self._chain

    @property
    def lnprobability(self):
        """
        A list of the log-probability values associated with each step in
        the chain.

        """
        return self._lnprob

    @property
    def acor(self):
        return self.get_autocorr_time()

    def get_autocorr_time(self, window=50):
        raise NotImplementedError("The acor method must be implemented "
                                  "by subclasses")

    def get_lnprob(self, p):
        """Return the log-probability at the given position."""
        return self.lnprobfn(p, *self.args, **self.kwargs)

    def reset(self):
        """
        Clear ``chain``, ``lnprobability`` and the bookkeeping parameters.

        """
        self.iterations = 0
        self.naccepted = 0

    def clear_chain(self):
        """An alias for :func:`reset` kept for backwards compatibility."""
        return self.reset()

    def sample(self, *args, **kwargs):
        raise NotImplementedError("The sampling routine must be implemented "
                                  "by subclasses")

    def run_mcmc(self, pos0, N, rstate0=None, lnprob0=None, **kwargs):
        """
        Iterate :func:`sample` for ``N`` iterations and return the result.

        :param pos0:
            The initial position vector.

        :param N:
            The number of steps to run.

        :param lnprob0: (optional)
            The log posterior probability at position ``p0``. If ``lnprob``
            is not provided, the initial value is calculated.

        :param rstate0: (optional)
            The state of the random number generator. See the
            :func:`random_state` property for details.

        :param kwargs: (optional)
            Other parameters that are directly passed to :func:`sample`.

        """
        for results in self.sample(pos0, lnprob0, rstate0, iterations=N,
                                   **kwargs):
            pass
        return results