/usr/lib/python2.7/dist-packages/emcee/tests.py is in python-emcee 2.1.0-5.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 | #!/usr/bin/env python
# encoding: utf-8
"""
Defines various nose unit tests
"""
import numpy as np
from .mh import MHSampler
from .ensemble import EnsembleSampler
from .ptsampler import PTSampler
logprecision = -4
def lnprob_gaussian(x, icov):
return -np.dot(x, np.dot(icov, x)) / 2.0
def lnprob_gaussian_nan(x, icov):
# if walker's parameters are zeros => return NaN
if not (np.array(x)).any():
result = np.nan
else:
result = -np.dot(x, np.dot(icov, x)) / 2.0
return result
def log_unit_sphere_volume(ndim):
if ndim % 2 == 0:
logfactorial = 0.0
for i in range(1, ndim / 2 + 1):
logfactorial += np.log(i)
return ndim / 2.0 * np.log(np.pi) - logfactorial
else:
logfactorial = 0.0
for i in range(1, ndim + 1, 2):
logfactorial += np.log(i)
return (ndim + 1) / 2.0 * np.log(2.0) \
+ (ndim - 1) / 2.0 * np.log(np.pi) - logfactorial
class LogLikeGaussian(object):
def __init__(self, icov):
"""Initialize a gaussian PDF with the given inverse covariance
matrix. If not ``None``, ``cutoff`` truncates the PDF at the
given number of sigma from the origin (i.e. the PDF is
non-zero only on an ellipse aligned with the principal axes of
the distribution). Without this cutoff, thermodynamic
integration with a flat prior is logarithmically divergent."""
self.icov = icov
def __call__(self, x):
dist2 = lnprob_gaussian(x, self.icov)
return dist2
class LogPriorGaussian(object):
def __init__(self, icov, cutoff=None):
self.icov = icov
self.cutoff = cutoff
def __call__(self, x):
dist2 = lnprob_gaussian(x, self.icov)
if self.cutoff is not None:
if -dist2 > self.cutoff * self.cutoff / 2.0:
return float('-inf')
else:
return 0.0
else:
return 0.0
def ln_flat(x):
return 0.0
class Tests:
def setUp(self):
self.nwalkers = 100
self.ndim = 5
self.ntemp = 20
self.N = 1000
self.mean = np.zeros(self.ndim)
self.cov = 0.5 - np.random.rand(self.ndim ** 2) \
.reshape((self.ndim, self.ndim))
self.cov = np.triu(self.cov)
self.cov += self.cov.T - np.diag(self.cov.diagonal())
self.cov = np.dot(self.cov, self.cov)
self.icov = np.linalg.inv(self.cov)
self.p0 = [0.1 * np.random.randn(self.ndim)
for i in range(self.nwalkers)]
self.truth = np.random.multivariate_normal(self.mean, self.cov, 100000)
def check_sampler(self, N=None, p0=None):
if N is None:
N = self.N
if p0 is None:
p0 = self.p0
for i in self.sampler.sample(p0, iterations=N):
pass
assert np.mean(self.sampler.acceptance_fraction) > 0.25
assert np.all(self.sampler.acceptance_fraction > 0)
chain = self.sampler.flatchain
maxdiff = 10. ** (logprecision)
assert np.all((np.mean(chain, axis=0) - self.mean) ** 2 / self.N ** 2
< maxdiff)
assert np.all((np.cov(chain, rowvar=0) - self.cov) ** 2 / self.N ** 2
< maxdiff)
def check_pt_sampler(self, cutoff, N=None, p0=None):
if N is None:
N = self.N
if p0 is None:
p0 = self.p0
for i in self.sampler.sample(p0, iterations=N):
pass
# Weaker assertions on acceptance fraction
assert np.mean(self.sampler.acceptance_fraction) > 0.1, \
"acceptance fraction < 0.1"
assert np.mean(self.sampler.tswap_acceptance_fraction) > 0.1, \
"tswap acceptance frac < 0.1"
maxdiff = 10.0 ** logprecision
chain = np.reshape(self.sampler.chain[0, ...],
(-1, self.sampler.chain.shape[-1]))
# np.savetxt('/tmp/chain.dat', chain)
log_volume = self.ndim * np.log(cutoff) \
+ log_unit_sphere_volume(self.ndim) \
+ 0.5 * np.log(np.linalg.det(self.cov))
gaussian_integral = self.ndim / 2.0 * np.log(2.0 * np.pi) \
+ 0.5 * np.log(np.linalg.det(self.cov))
lnZ, dlnZ = self.sampler.thermodynamic_integration_log_evidence()
print(self.sampler.get_autocorr_time())
assert np.abs(lnZ - (gaussian_integral - log_volume)) < 3 * dlnZ, \
("evidence incorrect: {0:g} versus correct {1:g} (uncertainty "
"{2:g})").format(lnZ, gaussian_integral - log_volume, dlnZ)
assert np.all((np.mean(chain, axis=0) - self.mean) ** 2.0 / N ** 2.0
< maxdiff), 'mean incorrect'
assert np.all((np.cov(chain, rowvar=0) - self.cov) ** 2.0 / N ** 2.0
< maxdiff), 'covariance incorrect'
def test_mh(self):
self.sampler = MHSampler(self.cov, self.ndim, lnprob_gaussian,
args=[self.icov])
self.check_sampler(N=self.N * self.nwalkers, p0=self.p0[0])
def test_ensemble(self):
self.sampler = EnsembleSampler(self.nwalkers, self.ndim,
lnprob_gaussian, args=[self.icov])
self.check_sampler()
def test_nan_lnprob(self):
self.sampler = EnsembleSampler(self.nwalkers, self.ndim,
lnprob_gaussian_nan,
args=[self.icov])
# If a walker is right at zero, ``lnprobfn`` returns ``np.nan``.
p0 = self.p0
p0[0] = 0.0
try:
self.check_sampler(p0=p0)
except ValueError:
# This should fail *immediately* with a ``ValueError``.
return
assert False, "We should never get here."
def test_inf_nan_params(self):
self.sampler = EnsembleSampler(self.nwalkers, self.ndim,
lnprob_gaussian, args=[self.icov])
# Set one of the walkers to have a ``np.nan`` value.
p0 = self.p0
p0[0][0] = np.nan
try:
self.check_sampler(p0=p0)
except ValueError:
# This should fail *immediately* with a ``ValueError``.
pass
else:
assert False, "The sampler should have failed by now."
# Set one of the walkers to have a ``np.inf`` value.
p0[0][0] = np.inf
try:
self.check_sampler(p0=p0)
except ValueError:
# This should fail *immediately* with a ``ValueError``.
pass
else:
assert False, "The sampler should have failed by now."
# Set one of the walkers to have a ``np.inf`` value.
p0[0][0] = -np.inf
try:
self.check_sampler(p0=p0)
except ValueError:
# This should fail *immediately* with a ``ValueError``.
pass
else:
assert False, "The sampler should have failed by now."
def test_parallel(self):
self.sampler = EnsembleSampler(self.nwalkers, self.ndim,
lnprob_gaussian, args=[self.icov],
threads=2)
self.check_sampler()
def test_pt_sampler(self):
cutoff = 10.0
self.sampler = PTSampler(self.ntemp, self.nwalkers, self.ndim,
LogLikeGaussian(self.icov),
LogPriorGaussian(self.icov, cutoff=cutoff))
p0 = np.random.multivariate_normal(mean=self.mean, cov=self.cov,
size=(self.ntemp, self.nwalkers))
self.check_pt_sampler(cutoff, p0=p0, N=1000)
def test_blobs(self):
lnprobfn = lambda p: (-0.5 * np.sum(p ** 2), np.random.rand())
self.sampler = EnsembleSampler(self.nwalkers, self.ndim, lnprobfn)
self.check_sampler()
# Make sure that the shapes of everything are as expected.
assert (self.sampler.chain.shape == (self.nwalkers, self.N, self.ndim)
and len(self.sampler.blobs) == self.N
and len(self.sampler.blobs[0]) == self.nwalkers), \
"The blob dimensions are wrong."
# Make sure that the blobs aren't all the same.
blobs = self.sampler.blobs
assert np.any([blobs[-1] != blobs[i] for i in range(len(blobs) - 1)])
|