/usr/lib/python3/dist-packages/expeyes/eyesj.py is in python-expeyes 3.4.2-1.
This file is owned by root:root, with mode 0o644.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 | '''
EYES for Young Engineers and Scientists -Junior (EYES Junior 1.0)
Python library to communicate to the PIC24FV32KA302 uC running 'eyesj.c'
Author : Ajith Kumar B.P, bpajith@gmail.com, ajith@iuac.res.in
License : GNU GPL version 3
Started on 25-Mar-2012
Last edit : 25-Oct-2012, added storing calibration to EEPROM
*
The micro-controller pins used are mapped into 13 I/O channels (numbered 0 to 12)
and act like a kind of logical channels. The Python function calls refer to them
using the corresponding number, ie 0 => A0.
* 0 : A0, Analog Comaparator(A5) output.
* 1 : A1, -5V to +5V range Analog Input
* 2 : A2, -5V to +5V range Analog Input
* 3 : IN1 , Can function as Digital or 0 to 5V Analog Input
* 4 : IN2, Can function as Digital or 0 to 5V Analog Input
* 5 : SEN, Simial to A3 & A4, but has a 5K external pullup resistor (Comp input)
* 6 : SQR1-read, Input wired to SQR1 output
* 7 : SQR2-read, Input wired to SQR2 output
* 8 : SQR1 control, 0 to 5V programmable Squarewave. Setting Freq = 0 means 5V, Freq = -1 means 0V
* 9 : SQR2 control, 0 to 5V programmable Squarewave
* 10: Digital output OD1,
* 11: CCS, Controls the 1mA constant current source.
* A12: Analog Input AN0 / RA0 (dummy entry for RA0), special case
'''
from __future__ import print_function
import serial, struct, math, time, subprocess, sys, os, os.path
# override chr() for Python3, to return a bytes rather than a string
if sys.version_info.major == 3:
#Python3
import builtins as __builtin__
def chr(val):
return bytes(__builtin__.chr(val), encoding="raw_unicode_escape")
def warningWithResult(warn, res):
return warn + str(res, encoding="utf-8")
else:
#Python2
import __builtin__
def warningWithResult(warn, res):
return warn + res
import gettext # For localization, inputs from Georges (georges.khaznadar@free.fr)
gettext.bindtextdomain('expeyes')
gettext.textdomain('expeyes')
_ = gettext.gettext
#Path to the calibration file
'''
if sys.platform.startswith('linux'):
calibrationDir=os.path.expanduser('~/.expeyes')
else:
calibrationDir="."
if not os.path.isdir(calibrationDir):
os.makedirs(calibrationDir)
calibrationFile=os.path.abspath(os.path.join(calibrationDir,'eyesj.cal'))
calibrationFileSEN=os.path.abspath(os.path.join(calibrationDir,'eyesj-sen.cal'))
calibrationFileCAP=os.path.abspath(os.path.join(calibrationDir,'eyesj-cap.cal'))
'''
#Commands with One byte argument (41 to 80)
GETVERSION = chr(1)
READCMP = chr(2) # Status of comparator output
READTEMP = chr(3) # IC Temperature
GETPORTB = chr(4)
#Commands with One byte argument (41 to 80)
READADC = chr(41) # Read the ADC channel
GETSTATE = chr(42) # Digital Input Status
NANODELAY = chr(43) # from IN2 to SEN, using CTMU, send current range
SETADCREF = chr(44) # non-zero value selects external +Vref option
READADCSM = chr(45) # Read the ADC channel, in Sleep Mode
IRSEND1 = chr(46) # Sends one byte over IR on SQR1
RDEEPROM = chr(47) # Read nwords starting from addr
# Commands with Two bytes argument (81 to 120)
R2RTIME = chr(81) # Time from rising edge to rising edge,arguments pin1 & pin2
R2FTIME = chr(82)
F2RTIME = chr(83)
F2FTIME = chr(84)
MULTIR2R = chr(85) # Time between rising edges, arguments pin & skipcycles
SET2RTIME = chr(86) # From a Dout transition to the Din transition
SET2FTIME = chr(87) #
CLR2RTIME = chr(88) #
CLR2FTIME = chr(89) #
HTPUL2RTIME = chr(90) # High True Pulse to HIGH
HTPUL2FTIME = chr(91) # High True Pulse to LOW
LTPUL2RTIME = chr(92) #
LTPUL2FTIME = chr(93) #
SETPULWIDTH = chr(94) # Width setting for PULSE2* functions
SETSTATE = chr(95) # SQR1, SQR2, OD & CCS only
SETDAC = chr(96) # 12 bit DAC setting
SETCURRENT = chr(97) # ADC channel, CTMU Irange
SETACTION = chr(98) # capture modifiers, action, target pin
SETTRIGVAL = chr(99) # Analog trigger level, 2 bytes
SRFECHOTIME = chr(100) # Trigger to Echo time for SRF0x modules
# Commands with Three bytes argument (121 to 160)
SETSQR1 = chr(121) # Square wave on OSC2
SETSQR2 = chr(122) # Square wave on OSC3
WREEPROM = chr(123) # write 1 word to the address
#Commands with Four bytes argument (161 to 200)
MEASURECV = chr(163) # ch, irange, duration
SETPWM1 = chr(164) # PWM on SQR1 output. Send ocxrx and ocx
SETPWM2 = chr(165) # PWM on SQR1 output.
IRSEND4 = chr(166) # 4 byte IR
#Commands with Five bytes argument (201 to 240)
CAPTURE = chr(201) # Ch, 2 byte NS, 2 byte TG
CAPTURE_HR = chr(202) # Ch, 2 byte NS, 2 byte TG
SETSQRS = chr(203) # Set both square waves, with specified phase difference. scale, ocr, diff
#Commands with Six bytes argument (241 to 255)
CAPTURE2 = chr(241) # ch1, ch2, NS, TG (1, 1, 2, 2)bytes
CAPTURE2_HR = chr(242) # ch1, ch2, NS, TG (1, 1, 2, 2)bytes
CAPTURE3 = chr(243) # ch1&ch2, ch3, ns , tg
CAPTURE4 = chr(244) # ch1&ch2, ch3&ch4, ns , tg
# Actions before capturing waveforms
AANATRIG = chr(0) # Trigger on analog input level, set by SETRIGVAL
AWAITHI = chr(1)
AWAITLO = chr(2)
AWAITRISE = chr(3)
AWAITFALL = chr(4)
ASET = chr(5)
ACLR = chr(6)
APULSEHT = chr(7)
APULSELT = chr(8)
BUFSIZE = 1800 # status + adcinfo + 1800 data
#Serial devices to search for EYES hardware.
linux_list = ['/dev/ttyACM0','/dev/ttyACM1','/dev/ttyACM2', '/dev/ttyACM3', '/dev/ttyAMA0']
def open(dev = None):
'''
If EYES hardware in found, returns an instance of 'Eyes', else returns None.
'''
obj = Eyesjun()
if obj.fd != None:
print(obj.msg)
obj.disable_actions() # Disable capture modifiers
obj.load_calibration()
return obj
print (_('Could not find EYES Junior hardware'))
print (_('Check the connections.'))
BAUDRATE = 115200 # Serial communication
class Eyesjun:
fd = None # init should fill this
DACMAX = 5.000 # DAC upper limit
DACM = 4095.0/5
tgap = 0.004 # 0.004 ms shift between two channels of capture2
m12 = [5.0/4095] + [10.0/4095]*2 + [5.0/4095]*10
m8 = [5.0/255] + [10.0/255] *2 + [5.0/255] *10
c = [0.0] + [-5.0]*2 + [0.0]*10
sen_pullup = 5100.0
cap_calib = 1.0 # Default values, to be loaded from file.
socket_cap = 30.0 # Set by calibrate.py
msg = ''
def __init__(self, dev = None):
"""
Searches for EYES hardware on USB-to-Serial adapters. Presence of the
device is done by reading the version string. Timeout set to 4 sec
TODO : Supporting more than one EYES on a PC to be done. The
question is how to find out whether a port is already open or
not, without doing any transactions to it.
@param dev a device to open, Defaults to None, so a few devices
will be tested
"""
if os.name == 'nt': # for Windows machines, search COM1 to COM255
device_list = []
for k in range(1,255):
s = 'COM%d'%k
device_list.append(s)
for k in range(1,11):
device_list.append(k)
else:
device_list = [] # Gather unused devices from linux_list
for dev in linux_list:
cmd='lsof -t {0} 2>&1; true'.format(dev)
res = subprocess.check_output(cmd, shell=True)
if len(res)==0:
device_list.append(dev)
for dev in device_list:
try:
handle = serial.Serial(dev, BAUDRATE, stopbits=1, timeout = 0.3) #8,1,no parity
except:
continue
self.msg = _('Port %s is existing ') %dev
if handle.isOpen() != True:
print (_('but could not open'))
continue
self.msg += _('and opened. ')
handle.flush()
time.sleep(.5)
while handle.inWaiting() > 0 :
handle.flushInput()
handle.write(GETVERSION)
res = handle.read(1)
ver = handle.read(5) # 5 character version number
if ver[:2] == b'ej':
self.device = dev
self.fd = handle
self.version = ver
handle.timeout = 4.0 # r2rtime on .7 Hz require this
self.msg += warningWithResult('Found EYES Junior version ', ver)
return # Successful return
else: # If it is not our device close the file
handle.close()
print (self.msg)
print (_('No EYES Junior hardware detected'))
self.fd = None
return
#---------------------------------------------------------------------------
def sendByte(self, bval):
"""
sends one byte to the interface
@parameter bval : a bytes of lenght 1
"""
self.fd.write(bval)
time.sleep(0.005) # This delay is for MCP2200 + uC
return
def sendInt(self,ival):
"""
send on integer to the inteface
@parameter ival an integer lesser than 65536
"""
delay=0.005 # This delay is for MCP2200 + uC
self.fd.write(chr(ival & 255))
time.sleep(delay)
self.fd.write(chr(ival >> 8))
time.sleep(delay)
return
def get_version(self):
"""
reads the version number from the device
@return a bytes
"""
self.sendByte(GETVERSION)
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('GETVERSION ERROR'), ver)
return
ver = self.fd.read(5)
return ver
"""------------------------EEPROM---------------------"""
def eeprom_write(self, addr, data):
"""
writes a few bytes to the EEPROM
@param addr a small integer
@param byte an integer (16 bits)
@return 1 (number of written words)
"""
self.sendByte(WREEPROM)
self.sendByte(chr(addr))
self.sendInt(data)
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('WREEPROM ERROR '), res)
print (warningWithResult(_('WREEPROM ERROR'), res))
return None
return 1
def eeprom_read(self, addr):
"""
read data from the EEPROM
@param addr a small integer (8bit)
@return an integer value (16 bits)
"""
self.sendByte(RDEEPROM)
self.sendByte(chr(addr))
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('RDEEPROM ERROR '), res)
return None
res = self.fd.read(2)
if sys.version_info.major == 3:
return res[0] | (res[1] << 8)
else:
return ord(res[0]) | (ord(res[1]) << 8)
def store_float(self, addr, data): # store a floating point number to EEPROM
ss = struct.pack('f', data)
if sys.version_info.major == 3:
lo = ss[0] | (ss[1] << 8)
hi = ss[2] | (ss[3] << 8)
else:
lo = ord(ss[0]) | (ord(ss[1]) << 8)
hi = ord(ss[2]) | (ord(ss[3]) << 8)
if self.eeprom_write(addr, lo) == None:
return None
if self.eeprom_write(addr+1, hi) == None:
return None
return 1
def restore_float(self, addr): # restore a floating point number from EEPROM
lo = self.eeprom_read(addr)
hi = self.eeprom_read(addr+1)
data = (hi << 16) | lo
ss = struct.pack('I', data)
res = struct.unpack('f', ss)
return res[0] # return the float
AM1 = 0 # EEPROM location of the parameters, y = mx + c, for A1 and A2
AC1 = 2
AM2 = 4
AC2 = 6
ASOC = 8 # Socket cap IN1
ACCF = 10 # Capacitance error factor
ARP = 12 # Pullup Resistance
def storeCF_a1a2(self, m1,c1,m2,c2): # slope & intercept for A1 and A2
if self.store_float(self.AM1, m1) == None:
return None
self.store_float(self.AC1, c1)
self.store_float(self.AM2, m2)
self.store_float(self.AC2, c2)
return 4 # Number of items written
def storeCF_cap(self, soc, ccf): #Socket capacitance and error factor
if self.store_float(self.ASOC, soc) == None:
return None
self.store_float(self.ACCF, ccf)
return 2
def storeCF_sen(self, r): # pullup resistor value
if self.store_float(self.ARP, r) == None:
return None
return 1
def load_calibration(self):
try:
m1 = self.restore_float(self.AM1)
c1 = self.restore_float(self.AC1)
m2 = self.restore_float(self.AM2)
c2 = self.restore_float(self.AC2)
m = 10.0/4095
c = -5.0
dm = m * 0.02 # maximum 2% deviation
dc = 5 * 0.02
# print (m1,c1,m2,c2, dm, dc)
if abs(m1-m) < dm and abs(m2-m) < dm and abs(c1-c) < dc and abs(c2-c) < dc:
self.m12[1] = m1
self.c[1] = c1
self.m12[2] = m2
self.c[2] = c2
self.m8[1] = m1 * 4095./255 # Scale factors for 8 bit read
self.m8[2] = m2 * 4095./255
# print (_('Calibration Factors :'), m1,c1,m2,c2)
else:
print (_('Invalid Calibration factors for A1,A2'), m1,c1,m2,c2)
except:
print (_('Could not load A1 & A2 Calibration'))
try:
soc = self.restore_float(self.ASOC)
ccf = self.restore_float(self.ACCF)
if (.8 < ccf < 1.2) and (20 < soc < 50):
self.cap_calib = ccf
self.socket_cap = soc
#print (_('IN1 Calibration :'), ccf, soc)
else:
print (_('Invalid Calibration factors for IN1'), soc, ccf)
except:
print (_('Could not load IN1 Capacitor Calibration'))
try:
r = self.restore_float(self.ARP)
if 4950 < r < 5250:
self.sen_pullup = r
#print (_('SEN Pullup :'), r)
else:
print (_('Invalid Pullup resistor value'), r)
except:
print (_('Could not load SEN Pullup calibration'))
return
#------------------------- Infrared comm. ----------------
def irsend1(self, d1):
"""
send one byte by IR
@param d1 a small integer (8bit)
"""
self.sendByte(IRSEND1)
self.sendByte(chr(d1))
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('IRSEND1 ERROR '), res)
print (warningWithResult(_('IRSEND1 ERROR '), res))
return
return 1
def irsend4(self, d1,d2,d3,d4):
"""
send four bytes by IR
@param d1 a small integer (8bit)
@param d2 a small integer (8bit)
@param d3 a small integer (8bit)
@param d4 a small integer (8bit)
"""
self.sendByte(IRSEND4)
self.sendByte(chr(d1))
self.sendByte(chr(d2))
self.sendByte(chr(d3))
self.sendByte(chr(d4))
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('IRSEND4 ERROR '), res)
print (warningWithResult(_('IRSEND4 ERROR '), res))
return
return 1
#--------------------------------------CTMU -------------
ctmui = [550, 0.55, 5.5, 55.0]
def nano_delay(self, i):
'''
Using the CTMU of PIC, measure r2r from IN2 or SEN. uses cap of IN1. Incomplete
ch = 3
self.sendByte(NANODELAY)
self.sendByte(self.rval[i])
res = self.fd.read(1)
if res != b'D':
print (_('MEASUREDELAY ERROR'), res)
return
res = self.fd.read(2)
iv = ord(res[0]) | (ord(res[1]) << 8)
print (iv)
v = self.m12[ch] * iv + self.c[ch]
return v
'''
return
def measure_cv(self, ch, ctime, i = 5.5):
'''
Using the CTMU of PIC, charges a capacitor connected to IN1, IN2 or SEN,
for 'ctime' microseconds and then mesures the voltage across it.
The value of current can be set to .55uA, 5.5 uA, 55uA or 550 uA
@param ch channel number
@param ctime duration in microseconds
@param i value of the current (defaults to 5.5 uA)
'''
if i > 500: # 550 uA
irange = 0
elif i > 50: #55 uA
irange = 3
elif i > 5: #5.5 uA, default value
irange = 2
else: # 0.55 uA
irange = 1
if ch not in [3,4]:
self.msg = _('Current to be set only on IN1(3) or IN2(4)')
print (_('Current to be set only on IN1 or IN2'))
return
self.sendByte(MEASURECV)
self.sendByte(chr(ch))
self.sendByte(chr(irange))
self.sendInt(ctime)
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('MEASURECV ERROR '), res)
print (warningWithResult(_('MEASURECV ERROR '), res))
return
res = self.fd.read(2)
if sys.version_info.major == 3:
iv = res[0] | (res[1] << 8)
else:
iv = ord(res[0]) | (ord(res[1]) << 8)
v = self.m12[ch] * iv + self.c[ch]
return v
def measure_cap_raw(self, ctmin = 10):
'''
Measures the capacitance connected between IN1 and GND. Stray
capacitance should be subtracted from the measured
value. Measurement is done by charging the capacitor with 5.5 uA
for a given time interval. Any error in the value of current
is corrected by calibrating.
'''
for ctime in range(ctmin, 1000, 10):
v = self.measure_cv(3, ctime, 5.5) # 5.5 uA range is chosen
if v > 2.0: break
if (v > 4) or (v == 0):
self.msg = _('Error measuring capacitance %5.3f') %v
print (_('Error measuring capacitance'), v)
return None
return 5.5 * ctime / v # returns value in pF
def measure_cap(self, ctmin = 10):
'''
Measures the capacitance connected between IN1 and GND.
Returns the value after applying corrections.
'''
cap = self.measure_cap_raw()
if cap != None:
return (cap - self.socket_cap) * self.cap_calib
else:
return None
def measure_res(self):
'''
Measures the resistance connected between SEN and GND.
'''
v = self.get_voltage(5)
if .1 < v < 4.9:
return 1.0 * self.sen_pullup * v /(5-v)
else:
self.msg = _('Resistance NOT in 100 Ohm to 100 kOhm range')
print (_('Resistance NOT in 100 Ohm to 100 kOhm range'))
return
def set_current(self, ch, i): # channel 3 or 4, 0 means stop CTMU
'''
Sets CTMU current 'i' on a channel 'ch' and returns the voltage measured
across the load. Allowed values of current are .55, 5.5, 55 and
550 uAmps.
@param ch channel number
@param i value of the current
'''
if i > 500: # 550 uA
irange = 0
elif i > 50: #55 uA
irange = 3
elif i > 5: #5.5 uA, default value
irange = 2
else: # 0.55 uA
irange = 1
if i == 0 : # indication to stop CTMU
ch = 0
if ch not in [0,3,4]: # 0 means stopping CTMU
self.msg = _('Current to be set only on IN1 or IN2')
print (_('Current to be set only on IN1 or IN2'))
return
self.sendByte(SETCURRENT)
self.sendByte(chr(ch))
self.sendByte(irange)
res = self.fd.read(1)
if res != b'D':
self.msg = warningWithResult(_('SETCURRENT ERROR'), res)
print (warningWithResult(_('SETCURRENT ERROR'), res))
return
res = self.fd.read(2)
if sys.version_info.major == 3:
iv = res[0] | (res[1] << 8)
else:
iv = ord(res[0]) | (ord(res[1]) << 8)
v = self.m12[ch] * iv + self.c[ch]
return v
def read_temp(self):
'''
Reads the temperature of uC, currently of no use. Have to see
whether this can be used for correcting the drift of the 5V
regulator with temperature.
'''
self.sendByte(READTEMP)
res = self.fd.read(1)
if res != b'D':
print (_('READTEMP error '), res)
self.msg = warningWithResult(_('READTEMP error'),res)
return
res = self.fd.read(2)
if sys.version_info.major == 3:
iv = res[0] | (res[1] << 8)
else:
iv = ord(res[0]) | (ord(res[1]) << 8)
return iv
#---------- Time Interval Measurements ----------------------
def tim_helper(self, cmd, src, dst):
'''
Helper function for all Time measurement calls. Command,
Source and destination pins are imputs. Returns time in
microseconds, -1 on error.
@param cmd a bytes of length 1
@param src a channel number for the source
@param dst a channel number for the destination
'''
if cmd == MULTIR2R:
if src not in [0,3,4,5,6,7]:
print (_('Pin should be digital input capable: 0,3,4,5,6 or 7'))
self.msg = _('Pin should be digital input capable: 0,3,4,5,6 or 7')
return -1
if dst > 249:
self.msg = _('skip exceeded 249 edges')
print (_('skip exceeded 249 edges'))
return -1
if cmd in [R2RTIME, R2FTIME, F2RTIME, F2FTIME]:
if src not in [0,3,4,5,6,7] or dst not in [0,3,4,5,6,7]:
self.msg = _('Both pins should be digital input capable: 0,3,4,5,6 or 7')
print (_('Both pins should be digital input capable: 0,3,4,5,6 or 7'))
return -1
if cmd in [SET2RTIME, SET2FTIME, CLR2RTIME, CLR2FTIME, HTPUL2RTIME, HTPUL2FTIME, LTPUL2RTIME, LTPUL2FTIME]:
if src not in [8,9,10,11]:
self.msg = _('Starting pin should be digital output capable: 8,9,10 or 11')
print (_('Starting pin should be digital output capable: 8,9,10 or 11'))
return -1
if dst not in [0,3,4,5,6,7]:
self.msg = _('Destination pin should be digital input capable: 0,3,4,5,6 or 7')
print (_('Destination pin should be digital input capable: 0,3,4,5,6 or 7'))
return -1
self.sendByte(cmd)
self.sendByte(chr(src))
self.sendByte(chr(dst))
res = self.fd.read(1)
if res != b'D':
self.msg = _('Time measurement command error')
print (_('Time measurement command %d error ') %ord(cmd), res)
return -1.0
res = self.fd.read(1)
data = self.fd.read(4)
raw = struct.unpack('I'* 1, data) # 32 bit data from T4/T5 counter, 0.125us cycles
ncycle = raw[0] + 0 # .25 usec correction
return round(float(ncycle)*0.125) # returns in microseconds
"""-------------- Passive Time Interval Measurements --------------------"""
def r2rtime(self, pin1, pin2):
'''
Time between two rising edges. The pins must be distinct. For same pin, use multi_r2rtime
'''
return self.tim_helper(R2RTIME, pin1, pin2)
def f2ftime(self, pin1, pin2):
'''
Time between two falling edges. The pins must be distinct. For same pin, use multi_r2rtime
'''
return self.tim_helper(F2FTIME, pin1, pin2)
def r2ftime(self, pin1, pin2):
'''
Time between a rising edge to a falling edge. The pins could be same or distinct.
'''
return self.tim_helper(R2FTIME, pin1, pin2)
def f2rtime(self, pin1, pin2):
'''
Time between a falling edge to a rising edge. The pins could be same or distinct.
'''
return self.tim_helper(F2RTIME, pin1, pin2)
def multi_r2rtime(self, pin, skip=0):
'''
Time between rising edges, could skip desired number of edges in between. (pin, 9) will give time required for
10 cycles of a squarewave, increases resolution.
'''
return self.tim_helper(MULTIR2R, pin, skip)
def get_frequency(self, pin):
'''
This function measures the frequency of an external 0 to 5V PULSE on digital inputs, by calling multi_r2rtime().
'''
t = self.multi_r2rtime(pin)
if t < 0:
return t
if 0 < t < 10000:
t = self.multi_r2rtime(pin,9)
return 1.0e7/t
return 1.0e6 / t
"""---------- Active time interval measurements ------------"""
def set2rtime(self, pin1, pin2):
'''
Time from setting pin1 to a rising edge on pin2.
'''
return self.tim_helper(SET2RTIME, pin1, pin2)
def set2ftime(self, pin1, pin2):
'''
Time from setting pin1 to a falling edge on pin2.
'''
return self.tim_helper(SET2FTIME, pin1, pin2)
def clr2rtime(self, pin1, pin2):
'''
Time from clearin pin1 to a rising edge on pin2.
'''
return self.tim_helper(CLR2RTIME, pin1, pin2)
def clr2ftime(self, pin1, pin2):
'''
Time from clearing pin1 to a falling edge on pin2.
'''
return self.tim_helper(CLR2FTIME, pin1, pin2)
def htpulse2rtime(self, pin1, pin2):
'''
Time from a HIGH True pulse on pin1 to a rising edge on pin2.
'''
return self.tim_helper(HTPUL2RTIME, pin1, pin2)
def htpulse2ftime(self, pin1, pin2):
'''
Time from HIGH True pulse on pin1 to a falling edge on pin2.
'''
return self.tim_helper(HTPUL2FTIME, pin1, pin2)
def ltpulse2rtime(self, pin1, pin2):
'''
Time from a LOW True pulse on pin1 to a rising edge on pin2.
'''
return self.tim_helper(LTPUL2RTIME, pin1, pin2)
def ltpulse2ftime(self, pin1, pin2):
'''
Time from LOW True pulse on pin1 to a falling edge on pin2.
'''
return self.tim_helper(LTPUL2FTIME, pin1, pin2)
def srfechotime(self, pin1, pin2):
'''
Time from Trigger on Echo for SRF0x module. Trig on pin1 and Echo on pin2.
'''
return self.tim_helper(SRFECHOTIME, pin1, pin2)
"""------------------------- Digital I/O-----------------------------"""
def set_state(self, pin, state):
'''
Sets the status of Digital outputs SQR1, SQR2, OD1 or CCS. It
will work on SQR1 & SQR2 only if the frequency is set to zero.
@param pin pin number
@param state a value 0 or 1
'''
self.sendByte(SETSTATE)
self.sendByte(chr(pin))
self.sendByte(chr(state))
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETSTATE error ')
print (_('SETSTATE error '), res)
return
return state
def get_state(self, pin):
'''
gets the status of the digital input pin. IN1, IN2 & SEN are
set to digital mode before sensing input level.
@param pin a pin number
@return the state of the pin as a small integer
'''
self.sendByte(GETSTATE)
self.sendByte(chr(pin))
res = self.fd.read(1)
if res != b'D':
self.msg = _('GETSTATE error ')
print (_('GETSTATE error '), res)
return
res = self.fd.read(1)
return ord(res)
def get_portb(self):
'''
Reads portB, returns 16 bits of data.
'''
self.sendByte(GETPORTB)
res = self.fd.read(1)
if res != b'D':
self.msg = _('GETPORTB error ')
print (_('GETPORTB error '), res)
return
res = self.fd.read(2)
raw = struct.unpack('H', res) # 16 bit data in byte array
print('%x'%raw)
return raw[0]
"""------- Square Wave Generation & Measuring the Frequency ----------"""
def set_pwm(self, osc, ds, resol=14): # osc and duty cycle, resolution 14 bits byn default
'''
Sets PWM on SQR1 / SQR2. The frequency is decided by the resolution in bits.
'''
if resol < 4 or resol > 16 or ds < 0 or ds > 100:
return
ocxrs = 2**resol
ocx = int(0.01 * ds * ocxrs + 0.5)
#print(ocxrs, ocx)
if osc == 0:
self.sendByte(SETPWM1)
else:
self.sendByte(SETPWM2)
self.sendInt(ocxrs-1) # ocxrs
self.sendInt(ocx) # ocx
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETPWM error ')
print(_('SETPWM error '), res)
return
return ds
def set_sqr1_pwm(self, dc, resol=14): # Duty cycle, resolution 14 bits (f = 488Hz) by default
'''
Sets 488 Hz PWM on SQR1. Duty cycle is specified in percentage. The third argument, PWM resolution, is
14 bits by default. Decreasing this by one doubles the frequency.
'''
return self.set_pwm(0,dc,resol)
def set_sqr2_pwm(self, dc, resol = 14):
'''
Sets 488 Hz PWM on SQR2. Duty cycle is specified in percentage. The third argument, PWM resolution, is
14 bits by default. Decreasing this by one doubles the frequency.
'''
return self.set_pwm(1,dc,resol)
def set_sqr1_dc(self, volt):
'''
PWM DAC on SQR1. Resolution is 10 bits (f = 7.8 kHz) by default. External Filter is required to get the DC
The voltage can be set from 0 to 5 volts.
'''
return 1.0*self.set_pwm(0, volt * 20.0, 10)/20 # 100% means 5 volts., 10 bit resolution, 8kHz
def set_sqr2_dc(self, volt):
'''
PWM DAC on SQR2. Resolution is 10 bits (f = 7.8 kHz) by default. External Filter is required to get the DC
The voltage can be set from 0 to 5 volts.
'''
return 1.0*self.set_pwm(1, volt * 20.0, 10)/20 #5V correspods to 100%
def set_osc(self, chan, freq): # Freq in Hertz, osc 1 or 2
'''
Sets the output frequency of the SQR1 (chan=8) or SQR2 (chan = 9). The function returns actual freqency set.
'''
if chan != 8 and chan != 9:
self.msg = _('Invalid channel number')
print(_('Invalid Channel'))
return
OCRS = 0
TCKPS = 0
if freq < 0: # Disable Timer and Set Output LOW
TCKPS = 254
elif freq == 0:
TCKPS = 255
else:
T = 0.125e-6 # Fosc = 16MHz
mtvals = [T, T*8, T*64, T*256] # Possible Timer period values
per = 1.0/freq # T requested
for k in range(4): # Find the optimum scaling, OCR value
if per < mtvals[k]*50000:
TCKPS = k
OCRS = 1.0*per/mtvals[k]
OCRS = int(OCRS+0.5)
freq = 1./(mtvals[k]*OCRS)
#print(freq,'--', k, OCRS, 1./(mtvals[k]*OCRS), TCKPS)
break
if TCKPS < 4 and OCRS == 0:
print(_('Invalid Freqency'))
return
if chan == 8:
self.sendByte(SETSQR1)
elif chan == 9:
self.sendByte(SETSQR2)
self.sendByte(chr(TCKPS)) # prescaling for timer
self.sendInt(OCRS) # OCRS value
res = self.fd.read(1)
if res != b'D':
print(_('SETSQR error '), res)
return 'Error: '+res
return freq
def set_sqr1(self, freq):
'''
Sets the frequency of SQR1 (between .7Hz and 200kHz). All intermediate values are not possible.
Returns the actual value set.
'''
return self.set_osc(8, freq)
def set_sqr2(self, freq):
'''
Sets the frequency of SQR2 (between .7Hz and 200kHz). All intermediate values are not possible.
Returns the actual value set.
'''
return self.set_osc(9, freq)
def set_sqrs(self, freq, diff=0): # Freq in Hertz, phase difference in % of T
'''
Sets the output frequency of both SQR1 & SQR2. The function returns actual value set. The second argument is the
phase difference between them in percentage.
'''
if freq == 0: # Disable both Square waves
self.set_sqr1(0)
self.set_sqr2(0)
return 0
elif freq < 0: # Disable both Square waves
self.set_sqr1(-1)
self.set_sqr2(-1)
return 0
if diff < 0 or diff >= 100.0:
self.msg = _('Invalid phase difference')
print(_('Invalid phase difference'))
return
OCRS = 0
TCKPS = 0
T = 0.125e-6 # Fosc = 16MHz
mtvals = [T, T*8, T*64, T*256] # Possible Timer period values
per = 1.0/freq # T requested
for k in range(4): # Find the optimum scaling, OCR value
if per < mtvals[k]*50000:
TCKPS = k
OCRS = 1.0*per/mtvals[k]
OCRS = int(OCRS+0.5)
freq = 1./(mtvals[k]*OCRS)
#print(freq,'--', k, OCRS, 1./(mtvals[k]*OCRS))
break
if TCKPS < 4 and OCRS == 0:
self.msg = _('Invalid Freqency')
print(_('Invalid Freqency'))
return
TG = int(1.0*diff*OCRS/100 +0.5)
if TG == 0: TG = 1 # Need to examine this
#print('TCKPS ', TCKPS, 'ocrs ', OCRS, TG)
self.sendByte(SETSQRS)
self.sendByte(chr(TCKPS)) # prescaling for timer
self.sendInt(OCRS) # OCRS value
self.sendInt(TG) # time difference
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETSQRS error ')
print(_('SETSQRS error '), res)
return
return freq
"""---------------------- ADC & DAC -------------------"""
def write_dac(self, iv):
'''
Writes the 12 bit I2C DAC to the desired value.
@param iv a value (integer between 0 and 4095)
'''
if iv < 0: iv = 0 # Force within limits
if iv > 4095: iv = 4095
self.sendByte(SETDAC)
self.sendInt(iv)
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETDAC error ')
print(_('SETDAC error '), res)
return
def read_adc(self, ch): # Sleep mode conversion
'''
Reads the specified ADC channel, Low level routine.
@param ch channel number
@return a value between 0 ans 4095
'''
if ch < 0 or ch > 31:
print(_('Argument error'))
return
self.sendByte(READADCSM)
self.sendByte(chr(ch))
res = self.fd.read(1)
if res != b'D':
self.msg = _('READADC error ')
print(_('READADC error '), res)
return
res = self.fd.read(2)
if sys.version_info.major == 3:
iv = res[0] | (res[1] << 8)
else:
iv = ord(res[0]) | (ord(res[1]) << 8)
return iv
def set_voltage(self, v):
'''
Sets the PVS output. range is from -5 to + 5 volts. Reads the actual value to apply correction.
Returns the voltage readback of the voltage at PVS.
'''
if v < 0 or v > 5.0:
self.msg = _('invalid voltage')
print(_('invalid voltage'))
return
goal = int(v * self.DACM + 0.5)
iv = goal
for k in range(10):
self.write_dac(iv)
isv = self.read_adc(12) # actual value
err = goal - isv
#print('iv & isv err', iv, isv, err , k)
if abs(err) <= 1: break
iv = iv + int(err/2) # Even if it exceeds 4095, write_dac() will fix it
sv = self.get_voltage(12) # The voltage actually set
return sv
def set_adcref(self, option):
'''
Sets the ADC reference option. Vdd ot external +Vref
@param option 0 means Vdd, else means external +Vref
@return option's value
'''
self.sendByte(SETADCREF)
self.sendByte(chr(option))
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETADCREF error ')
print(_('SETADCREF error '), res)
return
return option
def read_adcNS(self, ch): # No Sleep mode conversion
'''
Reads the specified ADC channel, Low level routine.
@param ch channel number
@return a value from 0 to 4095.
'''
if ch < 0 or ch > 31:
self.msg = _('READADC: Argument error')
print(_('Argument error'))
return
self.sendByte(READADC)
self.sendByte(chr(ch))
res = self.fd.read(1)
if res != b'D':
self.msg = _('READADC error')
print(_('READADC error'), res)
return
res = self.fd.read(2)
if sys.version_info.major == 3:
iv = res[0] | (res[1] << 8)
else:
iv = ord(res[0]) | (ord(res[1]) << 8)
return iv
def get_voltage(self, ch): # Sleep mode
'''
Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
0V to 5V for other channels.
'''
if (ch > 31):
self.msg = _('get_voltage: Argument error')
print(_('Argument error'))
return
iv = self.read_adc(ch)
#print('get_v: iv = ', iv)
v = self.m12[ch] * iv + self.c[ch]
return v
def get_voltageNS(self, ch): # No Sleep Mode
'''
Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
0V to 5V for other channels.
'''
if (ch > 31):
self.msg = _('get_voltageNS: Argument error')
print(_('Argument error'))
return
iv = self.read_adcNS(ch)
#print('get_v: iv = ', iv)
v = self.m12[ch] * iv + self.c[ch]
return v
def get_voltage_within(self, ch, vmax): # Channel and the expected maximum value, < 5V
'''
Sets the DAC to vmax and uses it as external +Vref, to increase resolution
'''
if ch > 31 or vmax > 5.0:
self.msg = _('Argument error')
print(_('Argument error'))
return
VM = self.set_voltage(vmax)
self.set_adcref(1) # External +Vref, from DAC
res = self.get_voltage(ch)
self.set_adcref(0) # Back to Vref+ = Vdd
return res * VM/5.0
def get_voltage_time(self, ch):
'''
Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
0V to 5V for other channels. Adds the PC time info
'''
if (ch > 31):
self.msg = _('get_voltage_time: Argument error')
print(_('Argument error'))
return
return (time.time(), self.get_voltage(ch))
def get_voltageNS_time(self, ch): # No Sleep mode conversion
'''
Reads the specified channel of the ADC. Returns -5V to 5V for channels 0 and 1
0V to 5V for other channels. Adds the PC time info
'''
if (ch > 31):
self.msg = _('Argument error')
print(_('Argument error'))
return _('Error ')
return (time.time(), self.get_voltageNS(ch))
def capture(self, ch, ns, tg):
'''
makes a capture of data from the ADC with 8 bits precision.
@param ch channel number,
@param ns number of samples
@param tg time gap between samples.
@return a vector of ns timesstamps and another of ns values from the ADC
'''
if tg < 4: # Minimum time required
self.msg = _('Minimum Timegap is 4 us')
return
ns=int(ns)
self.sendByte(CAPTURE)
self.sendByte(chr(ch))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg = _('CAPTURE error')
print(_('CAPTURE error '), res)
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns)
dl = len(data)
if dl != ns:
self.msg = _('CAPTURE: size mismatch %d %d') %(ns,dl)
print(_('CAPTURE: size mismatch '), ns, dl)
return
ta = []
va = []
raw = struct.unpack('B'* ns, data) # 1 byte words in the structure
for i in range(ns):
ta.append(0.001 * i * tg) # microseconds to milliseconds
va.append(raw[i] * self.m8[ch] + self.c[ch])
return ta,va
def capture_hr(self, ch, ns, tg):
'''
Captures data in high resolution (2 bytes, with 12 significant bits)
@param ch channel number
@param ns number of samples
@param tg time gap between two samples
@return a vector of ns timesstamps and another of ns values from the ADC
'''
if tg < 4:
self.msg = _('Minimum Timegap is 4 us')
return
ns=int(ns)
self.sendByte(CAPTURE_HR)
self.sendByte(chr(ch))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg = _('CAPTURE error ')
print(_('CAPTURE error '), res)
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns*2)
dl = len(data)
if dl != ns*2:
self.msg = _('CAPTURE: size mismatch %d %d') %(ns, dl)
print(_('CAPTURE: size mismatch '), ns, dl)
return
ta = []
va = []
raw = struct.unpack('H'* ns, data) # 1 byte words in the structure
for i in range(ns):
ta.append(0.001 * i * tg) # microseconds to milliseconds
va.append(raw[i] * self.m12[ch] + self.c[ch])
return ta,va
def capture2(self, cha, chb, ns, tg):
'''
Captures from 2 channels, data precision is 8 bits
@param cha first channel
@param chb second channel
@param ns number of samples
@param tg time gap between samples
@return 4 vectors of data: time, voltage, time, voltage
'''
if tg < 8:
self.msg = _('Minimum Timegap is (4*number of channels)usec')
return
ns=int(ns)
self.sendByte(CAPTURE2)
self.sendByte(chr(cha))
self.sendByte(chr(chb))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg =_('CAPTURE2 error ')
print(_('CAPTURE2 error '), res)
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns*2)
dl = len(data)
if dl != ns*2:
self.msg = _('CAPTURE2: size mismatch')
print(_('CAPTURE2: size mismatch'), ns*2, dl)
return
taa = [] # time & voltage arrays for CH0
vaa = []
tba = [] # time & voltage arrays for CH1
vba = []
raw = struct.unpack('B'* 2*ns, data) # 8 bit data in byte array
for i in range(ns):
taa.append(0.001 * i * tg)
vaa.append(raw[2*i] * self.m8[cha] + self.c[cha])
tba.append(0.001 * i * tg + self.tgap)
vba.append(raw[2*i +1] * self.m8[chb] + self.c[chb])
return taa,vaa,tba,vba
def capture2_hr(self, cha, chb, ns, tg):
'''
Captures from 2 channels, data precision is 12 bits
@param cha first channel
@param chb second channel
@param ns number of samples
@param tg time gap between samples
@return 4 vectors of data: time, voltage, time, voltage
'''
if tg < 8:
self.msg = _('Minimum Timegap is (4*number of channels)usec')
return
ns=int(ns)
self.sendByte(CAPTURE2_HR)
self.sendByte(chr(cha))
self.sendByte(chr(chb))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg = _('CAPTURE2_HR error ')
print(_('CAPTURE2_HR error '), res)
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns*2*2)
dl = len(data)
if dl != ns*2*2:
self.msg = _('CAPTURE2_HR: size mismatch')
print(_('CAPTURE2_HR: size mismatch'), ns*2*2, dl)
return
taa = [] # time & voltage arrays for CH0
vaa = []
tba = [] # time & voltage arrays for CH1
vba = []
raw = struct.unpack('H'* 2*ns, data) # 16 bit data in byte array
for i in range(ns):
taa.append(0.001 * i * tg)
vaa.append(raw[2*i] * self.m12[cha] + self.c[cha])
tba.append(0.001 * i * tg + self.tgap)
vba.append(raw[2*i +1] * self.m12[chb] + self.c[chb])
return taa,vaa,tba,vba
def capture3(self, ch1, ch2, ch3, ns, tg):
'''
Captures from 2 channels, data precision is 12 bits
@param ch1 first channel
@param ch2 second channel
@param ch3 third channel
@param ns number of samples
@param tg time gap between samples
@return 6 vectors of data: 3 x (time, voltage)
'''
if tg < 12:
self.msg = _('Minimum Timegap is (4*number of channels)usec')
return
ch12 = (ch2 << 4) | ch1 # first two channels packed in 1 byte
ns=int(ns)
self.sendByte(CAPTURE3)
self.sendByte(chr(ch12))
self.sendByte(chr(ch3))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg = _('CAPTURE3 error ')
print(_('CAPTURE3 error '), res)
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns*3)
dl = len(data)
if dl != ns*3:
self.msg = _('CAPTURE3: size mismatch ')
print(_('CAPTURE3: size mismatch '), ns*3, dl)
return
taa = [] # time & voltage arrays for CH0
vaa = []
tba = [] # time & voltage arrays for CH1
vba = []
tca = [] # time & voltage arrays for CH2
vca = []
raw = struct.unpack('B'* 3*ns, data) # 8 bit data in byte array
#print(raw)
for i in range(ns):
taa.append(0.001 * i * tg)
vaa.append(raw[3*i] * self.m8[ch1] + self.c[ch1])
tba.append(0.001 * i * tg + self.tgap)
vba.append(raw[3*i +1] * self.m8[ch2] + self.c[ch2])
tca.append(0.001 * i * tg + 2*self.tgap)
vca.append(raw[3*i +2] * self.m8[ch3] + self.c[ch3])
return taa,vaa, tba,vba, tca,vca
def capture4(self, ch1, ch2, ch3, ch4, ns, tg):
'''
Captures from 2 channels, data precision is 12 bits
@param ch1 first channel
@param ch2 second channel
@param ch3 third channel
@param ch4 fourth channel
@param ns number of samples
@param tg time gap between samples
@return 8 vectors of data: 4 x (time, voltage)
'''
if tg < 16:
self.msg = _('Minimum Timegap is (4*number of channels)usec')
return
ch12 = (ch2 << 4) | ch1 # first two channels packed in 1 byte
ch34 = (ch4 << 4) | ch3 # other two channels packed in 1 byte
ns=int(ns)
self.sendByte(CAPTURE4)
self.sendByte(chr(ch12))
self.sendByte(chr(ch34))
self.sendInt(ns)
self.sendInt(tg)
res = self.fd.read(1)
if res != b'D':
self.msg = _('CAPTURE4 error =')
print(_('CAPTURE4 error ='), ord(res))
return
res = self.fd.read(1) # adc_size info from other end, ignored
data = self.fd.read(ns*4)
dl = len(data)
if dl != ns*4:
self.msg = _('CAPTURE4: size mismatch ')
print(_('CAPTURE4: size mismatch '), ns*4, dl)
return
taa = [] # time & voltage arrays for CH0
vaa = []
tba = [] # time & voltage arrays for CH1
vba = []
tca = [] # time & voltage arrays for CH3
vca = []
tda = [] # time & voltage arrays for CH4
vda = []
raw = struct.unpack('B'* 4*ns, data) # 8 bit data in byte array
#print(raw)
for i in range(ns):
taa.append(0.001 * i * tg)
vaa.append(raw[4*i] * self.m8[ch1] + self.c[ch1])
tba.append(0.001 * i * tg + self.tgap)
vba.append(raw[4*i +1] * self.m8[ch2] + self.c[ch2])
tca.append(0.001 * i * tg + 2*self.tgap)
vca.append(raw[4*i +2] * self.m8[ch3] + self.c[ch3])
tda.append(0.001 * i * tg + 3*self.tgap)
vda.append(raw[4*i +3] * self.m8[ch4] + self.c[ch4])
return taa,vaa, tba,vba, tca,vca, tda, vda
def capture01(self, np, tg):
'''
captures channels A0 and A1 simultaneously, with 8 bit resolution
'''
return self.capture2(1,2,np,tg)
def capture01_hr(self, np, tg):
'''
captures channels A0 and A1 simultaneously, with 12 bit resolution
'''
return self.capture2_hr(1,2,np,tg)
def set_trigger(self, tval):
self.sendByte(SETTRIGVAL)
self.sendInt(tval)
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETTRIGVAL error ')
print(_('SETTRIGVAL error '), res)
return
return tval
"""----------------- Modifiers for Capture ----------------------------"""
def disable_actions(self):
'''
Disable all modifiers to the capture call. The capture calls will be set to
do analog triggering on the first channel captured.
'''
self.sendByte(SETACTION)
self.sendByte(AANATRIG)
self.sendByte(chr(0)) # Self trigger on channel zero means the first channel captured
res = self.fd.read(1)
if res != b'D':
self.msg = _('ERROR: SETACTION')
print(_('ERROR: SETACTION'), res)
return
return 0
def enable_action(self, action, ch):
"""
Enables some action
@param action a bytes of length 1
@param ch a channel number
@return action's value
"""
actions=(AANATRIG, AWAITHI, AWAITLO, AWAITRISE, AWAITFALL, ASET,
ACLR, APULSEHT, APULSELT)
if action not in actions or ch < 1 or ch > 11:
self.msg = 'Invalid actions or source specified'
return
self.sendByte(SETACTION)
self.sendByte(action)
self.sendByte(chr(ch))
res = self.fd.read(1)
if res != b'D':
self.msg = _('SETACTION ERR')
print(_('SETACTION ERR: action = %d ch = %d') %(action,ch), res)
return
return action
def set_trig_source(self, ch):
'''
Analog Trigger of the desired channel
'''
return self.enable_action(AANATRIG, ch)
def enable_wait_high(self, ch):
'''
Wait for a HIGH on the specified 'pin' just before every Capture.
'''
return self.enable_action(AWAITHI, ch)
def enable_wait_low(self, ch):
'''
Wait for a LOW on the specified 'pin' just before every Capture.
'''
return self.enable_action(AWAITLO, ch)
def enable_wait_rising(self, ch):
'''
Wait for a rising EDGE on the specified 'pin' just before every Capture.
'''
return self.enable_action(AWAITRISE, ch)
def enable_wait_falling(self, ch):
'''
Wait for a falling EDGE on the specified 'pin' just before every Capture.
'''
return self.enable_action(AWAITFALL, ch)
def enable_set_high(self, ch):
'''
Sets the specified 'pin' HIGH, just before every Capture.
'''
return self.enable_action(ASET, ch)
def enable_set_low(self, ch):
'''
Sets the specified 'pin' LOW, just before every Capture.
'''
return self.enable_action(ACLR, ch)
def enable_pulse_high(self, ch):
'''
Generate a HIGH TRUE Pulse on the specified 'pin', just before every Capture.
width is specified by the set_pulsewidth() function.
'''
return self.enable_action(APULSEHT, ch)
def enable_pulse_low(self, ch):
'''
Generate a LOW TRUE Pulse on the specified 'pin', just before every Capture.
'''
return self.enable_action(APULSELT, ch)
def set_pulsewidth(self, width):
'''
Sets the 'pulse_width' parameter for pulse2rtime() command.
Also used by usound_time() and the elable_pulse_high/low() functions
@param width an integer value (microseconds
@return the value of width
'''
if width < 1 or width > 500:
self.msg = _('Invalid pulse width')
return
self.sendByte(SETPULWIDTH)
self.sendInt(width)
res = self.fd.read(1)
if res != b'D':
self.msg = _('ERROR: SETPULWIDTH')
print(_('ERROR: SETPULWIDTH'), res)
return
return width
"""-----------DIRECT PORT ACCESS FUNCTIONS-----------"""
"""-----------(Use only if you know what you are doing)---------"""
def set_ddr(self, port, direc):
self.dwrite(SETDDR)
self.dwrite(chr(port)) # 0 to 3 for A,B,C and D
self.dwrite(chr(direc))
self.fd.read(1)
return
def set_port(self, port, val):
self.dwrite(SETPORT)
self.dwrite(chr(port)) # 0 to 3 for A,B,C and D
self.dwrite(chr(val))
self.fd.read(1)
return
def get_port(self, port):
self.dwrite(SETPORT)
self.dwrite(chr(port)) # 0 to 3 for A,B,C and D
self.fd.read(1)
data = self.fd.read(1) # get the status byte only
return ord(data)
"""---------------------- may go to eyeutils.py --------------------"""
def minimum(self,va):
vmin = 1.0e10 # need to change
for v in va:
if v < vmin:
vmin = v
return vmin
def maximum(self,va):
vmax = 1.0e-10 # need to change
for v in va:
if v > vmax:
vmax = v
return vmax
def rms(self,va):
vsum = 0.0
for v in va:
vsum += v**2
v = 1.0*vsum / len(va)
return math.sqrt(v)
def mean(self,va):
vsum = 0.0
for v in va:
vsum += v
v = 1.0*vsum / len(va)
return v
def save(self, data, filename = 'plot.dat'):
'''
Input data is of the form, [ [x1,y1], [x2,y2],....] where x and y are vectors
'''
if data == None: return
f = __builtin__.open(filename,'w')
for xy in data:
for k in range(len(xy[0])):
f.write('%5.3f %5.3f\n'%(xy[0][k], xy[1][k]))
f.write('\n')
f.close()
def grace(self, data, xlab = '', ylab = '', title = ''):
'''
Input data is of the form, [ [x1,y1], [x2,y2],....] where x and y are vectors
'''
try:
import pygrace
pg = pygrace.grace()
for xy in data:
pg.plot(xy[0],xy[1])
pg.hold(1) # Do not erase the old data
pg.xlabel(xlab)
pg.ylabel(ylab)
pg.title(title)
return True
except:
return False
# Local Variables:
# python-indent: 4
# End:
|