This file is indexed.

/usr/include/gamera/plugins/convolution.hpp is in python-gamera-dev 3.4.2+svn1437-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
/*
 *
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom,
 * and Karl MacMillan
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 * 
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef mgd_convolution
#define mgd_convolution

#include "gamera.hpp"
#include "vigra/stdconvolution.hxx"

using namespace Gamera;

template<class T, class U>
typename ImageFactory<T>::view_type* convolve(const T& src, const U& k, int border_mode) {
  if (k.nrows() > src.nrows() || k.ncols() > src.ncols())
    throw std::runtime_error("The image must be bigger than the kernel.");

  typename ImageFactory<T>::data_type* dest_data =
    new typename ImageFactory<T>::data_type(src.size(), src.ul());
  typename ImageFactory<T>::view_type* dest =
    new typename ImageFactory<T>::view_type(*dest_data);

  // I originally had the following two lines abstracted out in a function,
  // but that seemed to choke and crash gcc 3.3.2
  try {
    typename U::ConstIterator center = k.upperLeft() + Diff2D(k.center_x(), k.center_y());
    tuple5<
      typename U::ConstIterator,
      typename choose_accessor<U>::accessor,
      Diff2D, Diff2D, BorderTreatmentMode> kernel
      (center, choose_accessor<U>::make_accessor(k), 
       Diff2D(-k.center_x(), -k.center_y()),
       Diff2D(k.width() - k.center_x(), k.height() - k.center_y()),
       (BorderTreatmentMode)border_mode);
    
    vigra::convolveImage(src_image_range(src), dest_image(*dest), kernel); 
  } catch (std::exception e) {
    delete dest;
    delete dest_data;
    throw;
  }
  return dest;
}

template<class T, class U>
typename ImageFactory<T>::view_type* convolve_x(const T& src, const U& k, int border_mode) {
  if (k.nrows() > src.nrows() || k.ncols() > src.ncols())
    throw std::runtime_error("The image must be bigger than the kernel.");
  if (k.nrows() != 1)
    throw std::runtime_error("The 1D kernel must have only one row.");

  typename ImageFactory<T>::data_type* dest_data =
    new typename ImageFactory<T>::data_type(src.size(), src.origin());
  typename ImageFactory<T>::view_type* dest =
    new typename ImageFactory<T>::view_type(*dest_data);

  // I originally had the following two lines abstracted out in a function,
  // but that seemed to choke and crash gcc 3.3.2
  try {
    typename U::const_vec_iterator center = k.vec_begin() + k.center_x();
    tuple5<
      typename U::const_vec_iterator,
      typename choose_accessor<U>::accessor,
      int, int, BorderTreatmentMode> kernel
      (center, choose_accessor<U>::make_accessor(k), 
       -int(k.center_x()), int(k.width()) - int(k.center_x()) - 1,
       (BorderTreatmentMode)border_mode);
    
    vigra::separableConvolveX(src_image_range(src), dest_image(*dest), kernel); 
  } catch (std::exception e) {
    delete dest;
    delete dest_data;
    throw;
  }
  return dest;
}

template<class T, class U>
typename ImageFactory<T>::view_type* convolve_y(const T& src, const U& k, int border_mode) {
  if (k.nrows() > src.ncols() || k.ncols() > src.nrows())
    throw std::runtime_error("The image must be bigger than the kernel.");
  if (k.nrows() != 1)
    throw std::runtime_error("The 1D kernel must have only one row.");

  typename ImageFactory<T>::data_type* dest_data =
    new typename ImageFactory<T>::data_type(src.size(), src.origin());
  typename ImageFactory<T>::view_type* dest =
    new typename ImageFactory<T>::view_type(*dest_data);

  // I originally had the following two lines abstracted out in a function,
  // but that seemed to choke and crash gcc 3.3.2
  try {
    typename U::const_vec_iterator center = k.vec_begin() + k.center_x();
    tuple5<
      typename U::const_vec_iterator,
      typename choose_accessor<U>::accessor,
      int, int, BorderTreatmentMode> kernel
      (center, choose_accessor<U>::make_accessor(k), 
       -int(k.center_x()), int(k.width()) - int(k.center_x()) - 1,
       (BorderTreatmentMode)border_mode);
    
    vigra::separableConvolveY(src_image_range(src), dest_image(*dest), kernel); 
  } catch (std::exception e) {
    delete dest;
    delete dest_data;
    throw;
  }
  return dest;
}

FloatImageView* _copy_kernel(const Kernel1D<FloatPixel>& kernel) {
  FloatImageData* dest_data = new FloatImageData(Dim(kernel.size(), 1));
  FloatImageView* dest = new FloatImageView(*dest_data);
  try {
    FloatImageView::vec_iterator iout = dest->vec_begin();
    for (int iin = kernel.left(); iin != kernel.right(); ++iout, ++iin)
      *iout = kernel[iin];
  } catch (std::exception e) {
    delete dest;
    delete dest_data;
    throw;
  }
  return dest;
}

// The following functions generate various kernels useful for
// separable convolution.  It might be possible to avoid the copy
// by creating a new version of ImageData with push_back, or some
// way to set the ImageData m_data member, but in the absense of
// any such hack, this will do for now.  The kernels all tend to be
// quite small, so the copy shouldn't be too bad.

FloatImageView* GaussianKernel(double std_dev) {
  Kernel1D<FloatPixel> kernel;
  kernel.initGaussian(std_dev);
  return _copy_kernel(kernel);
}

FloatImageView* GaussianDerivativeKernel(double std_dev, int order) {
  Kernel1D<FloatPixel> kernel;
  kernel.initGaussianDerivative(std_dev, order);
  return _copy_kernel(kernel);
}

FloatImageView* BinomialKernel(int radius) {
  Kernel1D<FloatPixel> kernel;
  kernel.initBinomial(radius);
  return _copy_kernel(kernel);
}

FloatImageView* AveragingKernel(int radius) {
  Kernel1D<FloatPixel> kernel;
  kernel.initAveraging(radius);
  return _copy_kernel(kernel);
}

FloatImageView* SymmetricGradientKernel() {
  Kernel1D<FloatPixel> kernel;
  kernel.initSymmetricGradient();
  return _copy_kernel(kernel);
}

FloatImageView* SimpleSharpeningKernel(double sf) {
  FloatImageData* dest_data = new FloatImageData(Dim(3, 3));
  FloatImageView* dest = new FloatImageView(*dest_data);
  dest->set(Point(0, 0), -sf/16.0);
  dest->set(Point(1, 0), -sf/8.0);
  dest->set(Point(2, 0), -sf/16.0);
  dest->set(Point(0, 1), -sf/8.0);
  dest->set(Point(1, 1), 1.0+sf*0.75);
  dest->set(Point(2, 1), -sf/8.0);
  dest->set(Point(0, 2), -sf/16.0);
  dest->set(Point(1, 2), -sf/8.0);
  dest->set(Point(2, 2), -sf/16.0);
  return dest;
}

#endif