This file is indexed.

/usr/include/gamera/plugins/runlength.hpp is in python-gamera-dev 3.4.2+svn1437-2.

This file is owned by root:root, with mode 0o644.

The actual contents of the file can be viewed below.

  1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
/*
 * Copyright (C) 2001-2005 Ichiro Fujinaga, Michael Droettboom, and Karl MacMillan
 *
 * This program is free software; you can redistribute it and/or
 * modify it under the terms of the GNU General Public License
 * as published by the Free Software Foundation; either version 2
 * of the License, or (at your option) any later version.
 *
 * This program is distributed in the hope that it will be useful,
 * but WITHOUT ANY WARRANTY; without even the implied warranty of
 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
 * GNU General Public License for more details.
 *
 * You should have received a copy of the GNU General Public License
 * along with this program; if not, write to the Free Software
 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
 */

#ifndef kwm11052002_runlength
#define kwm11052002_runlength

#ifndef GAMERA_NO_PYTHON
#include <Python.h>
#endif
#include "gamera.hpp"
#include "python_iterator.hpp"
#include <vector>
#include <algorithm>
#include <sstream>

#undef major
#undef minor

namespace Gamera {
  typedef std::pair<size_t, int> RunPair;
  typedef std::vector<RunPair> RunVector;

  ///////////////////////////////////////////////////////////////////////////
  // These classes manage the two dimensions on which most of the
  // functions in this modules are parameterized: color and direction.
  // These parameters are templatized types in most functions.
  namespace runs {
    class White {
    public:
      template<class T>
      inline bool is_self(const T& v) const {
	return is_white(v);
      }
      template<class T>
      inline bool is_other(const T& v) const {
	return is_black(v);
      }
      template<class T>
      inline typename T::value_type self(const T& v) const {
	return white(v);
      }
      template<class T>
      inline typename T::value_type other(const T& v) const {
	return black(v);
      }
    };

    class Black {
    public:
      template<class T>
      inline bool is_self(const T& v) const {
	return is_black(v);
      }
      template<class T>
      inline bool is_other(const T& v) const {
	return is_white(v);
      }
      template<class T>
      inline typename T::value_type self(const T& v) const {
	return black(v);
      }
      template<class T>
      inline typename T::value_type other(const T& v) const {
	return white(v);
      }
    };

    inline Black get_other_color(const White& color) {
      return Black();
    }

    inline White get_other_color(const Black& color) {
      return White();
    }

    class Horizontal {
    public:
      template<class T>
      inline typename T::const_row_iterator begin(const T& image) const {
	return image.row_begin();
      }
      template<class T>
      inline typename T::const_row_iterator end(const T& image) const {
	return image.row_end();
      }
      template<class T>
      inline typename T::row_iterator begin(T& image) const {
	return image.row_begin();
      }
      template<class T>
      inline typename T::row_iterator end(T& image) const {
	return image.row_end();
      }
      template<class T>
      size_t major(const T& image) const {
	return image.nrows();
      }
      template<class T>
      size_t minor(const T& image) const {
	return image.ncols();
      }
    };

    class Vertical {
    public:
      template<class T>
      inline typename T::const_col_iterator begin(const T& image) const {
	return image.col_begin();
      }
      template<class T>
      inline typename T::const_col_iterator end(const T& image) const {
	return image.col_end();
      }
      template<class T>
      inline typename T::col_iterator begin(T& image) const {
	return image.col_begin();
      }
      template<class T>
      inline typename T::col_iterator end(T& image) const {
	return image.col_end();
      }
      template<class T>
      size_t major(const T& image) const {
	return image.ncols();
      }
      template<class T>
      size_t minor(const T& image) const {
	return image.nrows();
      }
    };

    template<class T, class Direction>
    class GetIterator {
    public:
      typedef typename T::vec_iterator iterator;
      typedef typename T::const_vec_iterator const_iterator;
    };

    template<class T>
    class GetIterator<T, Vertical> {
    public:
      typedef typename T::col_iterator iterator;
      typedef typename T::const_col_iterator const_iterator;
    };

    template<class T>
    class GetIterator<T, Horizontal> {
    public:
      typedef typename T::row_iterator iterator;
      typedef typename T::const_row_iterator const_iterator;
    };
  }

///////////////////////////////////////////////////////////////////////////
// Finding the end of runs
  template<class T, class Color>
  inline void run_end(T& i, const T end, const Color& color) {
    for (; i != end; ++i) {
      if (color.is_other(*i))
	break;
    }
  }

///////////////////////////////////////////////////////////////////////////
//  Find the length of the largest run in a a row
//  or column of a image.
  template<class T, class Color>
  inline size_t max_run(T i, const T end, const Color& color) {
    size_t max = 0;
    while (i != end) {
      if (color.is_self(*i)) {
	T last = i;
	run_end(i, end, color);
	size_t cur_length = i - last;
	if (cur_length > max)
	  max = cur_length;
      } else {
	run_end(i, end, color);
      }
    }
    return max;
  }

///////////////////////////////////////////////////////////////////////////
// Run-length histograms. These make a histogram of the lenght of the
// runs in an image. They take an iterator range and a random-access
// container for the result (that should be appropriately sized). The
// histogram vector is not filled with zeros so that successive calls
// can be made to this algorithm with the same vector to do the
// histogram of an entire image. KWM

  template<class T>
  struct SortBySecondFunctor {
    bool operator()(const T& a, const T& b) {
      if (a.second == b.second)
	return a.first < b.first;
      return a.second >= b.second;
    }
  };

  RunVector* _sort_run_results(IntVector* hist) {
    RunVector* runs = new RunVector(hist->size());
    try {
      for (size_t i = 0; i < hist->size(); ++i) {
	(*runs)[i].first = i;
	(*runs)[i].second = (*hist)[i];
      }
      SortBySecondFunctor<RunPair> func;
      std::sort(runs->begin(), runs->end(), func);
    } catch (std::exception e) {
      delete runs;
      throw;
    }
    return runs;
  }

  PyObject* _run_results_to_python(RunVector* runs, long n) {
    if ((n < 0) || (n > (long)runs->size()))
      n = (long)runs->size();
    PyObject* result = PyList_New(n);
    for (long i = 0; i < n; ++i) {
      PyObject* tuple = Py_BuildValue(CHAR_PTR_CAST "ii", (*runs)[i].first, (*runs)[i].second);
      PyList_SET_ITEM(result, i, tuple);
    }
    delete runs;
    return result;
  }

  template<class T, class Vec, class Color>
  inline void run_histogram(T i, const T end, Vec& hist, const Color& color) {
    while (i != end) {
      if (color.is_self(*i)) {
	T last = i;
	run_end(i, end, color);
	size_t cur_length = i - last;
	hist[cur_length]++;
      } else {
	run_end(i, end, get_other_color(color));
      }
    }
  }

  /* Horizontal run histograms and vertical run histograms use an entirely
     different algorithm, for efficiency reasons.  These are handled by
     the overloading on the direction parameter.
  */
  template<class T, class Color>
  IntVector* run_histogram(const T& image, const Color& color, const runs::Horizontal& direction) {
    typedef typename runs::GetIterator<T, runs::Horizontal>::const_iterator iterator;
    IntVector* hist = new IntVector(image.ncols() + 1, 0);

    try {
      iterator end = direction.end(image);
      for (iterator i = direction.begin(image); i != end; ++i)
	run_histogram(i.begin(), i.end(), *hist, color);
    } catch (std::exception e) {
      delete hist;
      throw;
    }
    return hist;
  }

  template<class Color, class T>
  IntVector* run_histogram(const T& image, const Color& color, const runs::Vertical& direction) {
    // MGD: Changed so data is accessed in row-major order.  This should make things
    //      much faster.
    //typedef typename runs::GetIterator<T, runs::Vertical>::const_iterator iterator;
    IntVector* hist = new IntVector(image.nrows() + 1, 0);
    IntVector tmp(image.ncols(), 0);

    try {
      for (size_t r = 0; r != image.nrows(); ++r) {
	for (size_t c = 0; c != image.ncols(); ++c) {
	  if (color.is_self(image.get(Point(c, r)))) {
	    tmp[c]++;
	  } else {
	    if (tmp[c] > 0) {
	      (*hist)[tmp[c]]++;
	      tmp[c] = 0;
	    }
	  }
	}
      }
    } catch (std::exception e) {
      delete hist;
      throw;
    }

    return hist;
  }

  template<class T>
  IntVector* run_histogram(const T& image, char* const& color_, char* const& direction_) {
    std::string color(color_);
    std::string direction(direction_);
    if (color == "black") {
      if (direction == "horizontal") {
	return run_histogram(image, runs::Black(), runs::Horizontal());
      } else if (direction == "vertical") {
	return run_histogram(image, runs::Black(), runs::Vertical());
      }
    } else if (color == "white") {
      if (direction == "horizontal") {
	return run_histogram(image, runs::White(), runs::Horizontal());
      } else if (direction == "vertical") {
	return run_histogram(image, runs::White(), runs::Vertical());
      }
    }
    throw std::runtime_error("color must be either \"black\" or \"white\" and direction must be either \"horizontal\" or \"vertical\".");
  }

///////////////////////////////////////////////////////////////////////////
// Most frequent run(s) (basically returning a subset of a sorted histogram)

  template<class T, class Color, class Direction>
  size_t most_frequent_run(const T& image, const Color& color, const Direction& direction) {
    IntVector* hist = run_histogram(image, color, direction);
    size_t result;
    try {
      result = std::max_element(hist->begin(), hist->end()) - hist->begin();
    } catch (std::exception e) {
      delete hist;
      throw;
    }
    delete hist;
    return result;
  }

  template<class T>
  size_t most_frequent_run(const T& image, char* const& color_, char* const& direction_) {
    std::string color(color_);
    std::string direction(direction_);
    if (color == "black") {
      if (direction == "horizontal") {
	return most_frequent_run(image, runs::Black(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_run(image, runs::Black(), runs::Vertical());
      }
    } else if (color == "white") {
      if (direction == "horizontal") {
	return most_frequent_run(image, runs::White(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_run(image, runs::White(), runs::Vertical());
      }
    }
    throw std::runtime_error("color must be either \"black\" or \"white\" and direction must be either \"horizontal\" or \"vertical\".");
  }

  template<class T, class Color, class Direction>
  RunVector* most_frequent_runs(const T& image, const Color& color, const Direction& direction) {
    IntVector* hist = run_histogram(image, color, direction);
    RunVector* result = NULL;
    try {
      result = _sort_run_results(hist);
    } catch (std::exception e) {
      delete hist;
      throw;
    }
    delete hist;
    return result;
  }

  template<class T>
  RunVector* most_frequent_runs(const T& image, char* const& color_, char* const& direction_) {
    std::string color(color_);
    std::string direction(direction_);
    if (color == "black") {
      if (direction == "horizontal") {
	return most_frequent_runs(image, runs::Black(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_runs(image, runs::Black(), runs::Vertical());
      }
    } else if (color == "white") {
      if (direction == "horizontal") {
	return most_frequent_runs(image, runs::White(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_runs(image, runs::White(), runs::Vertical());
      }
    }
    throw std::runtime_error("color must be either \"black\" or \"white\" and direction must be either \"horizontal\" or \"vertical\".");
  }

  template<class T, class Color, class Direction>
  PyObject* most_frequent_runs(const T& image, long n, const Color& color, const Direction& direction) {
    RunVector* runs = most_frequent_runs(image, color, direction);
    PyObject* result;
    try {
      result = _run_results_to_python(runs, n);
    } catch (std::exception e) {
      delete runs;
      throw;
    }
    return result;
  }

  template<class T>
  PyObject* most_frequent_runs(const T& image, long n, char* const& color_, char* const& direction_) {
    std::string color(color_);
    std::string direction(direction_);
    if (color == "black") {
      if (direction == "horizontal") {
	return most_frequent_runs(image, n, runs::Black(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_runs(image, n, runs::Black(), runs::Vertical());
      }
    } else if (color == "white") {
      if (direction == "horizontal") {
	return most_frequent_runs(image, n, runs::White(), runs::Horizontal());
      } else if (direction == "vertical") {
	return most_frequent_runs(image, n, runs::White(), runs::Vertical());
      }
    }
    throw std::runtime_error("color must be either \"black\" or \"white\" and direction must be either \"horizontal\" or \"vertical\".");
  }

///////////////////////////////////////////////////////////////////////////
// Runlength filtering.

  // filter based on run-length
  template<class Iter, class Functor, class Color>
  inline void filter_run(Iter i, const Iter end, const int min_length, const Functor& functor, const Color& color) {
    while (i != end) {
      if (color.is_self(*i)) {
	Iter last = i;
	run_end(i, end, color);
	if (functor(i - last, min_length))
	  std::fill(last, i, color.other(i));
      } else {
	run_end(i, end, get_other_color(color));
      }
    }
  }

  template<class Iter, class Color>
  inline void image_filter_long_run(Iter i, const Iter end, const int min_length, const Color& color) {
    for (; i != end; i++)
      filter_run(i.begin(), i.end(), min_length, std::greater<size_t>(), color);
  }

  template<class Iter, class Color>
  inline void image_filter_short_run(Iter i, const Iter end, const int max_length, const Color& color) {
    for (; i != end; i++)
      filter_run(i.begin(), i.end(), max_length, std::less<size_t>(), color);
  }

  template<class T, class Color>
  void filter_narrow_runs(T& image, size_t max_width, const Color& color) {
    image_filter_short_run(image.row_begin(), image.row_end(), max_width, color);
  }

  template<class T>
  void filter_narrow_runs(T& image, size_t max_width, char* const& color_) {
    std::string color(color_);
    if (color == "black")
      return filter_narrow_runs(image, max_width, runs::Black());
    else if (color == "white")
      return filter_narrow_runs(image, max_width, runs::White());
    throw std::runtime_error("color must be either \"black\" or \"white\".");
  }

  template<class T, class Color>
  void filter_short_runs(T& image, size_t max_height, const Color& color) {
    image_filter_short_run(image.col_begin(), image.col_end(), max_height, color);
  }

  template<class T>
  void filter_short_runs(T& image, size_t max_width, char* const& color_) {
    std::string color(color_);
    if (color == "black")
      return filter_short_runs(image, max_width, runs::Black());
    else if (color == "white")
      return filter_short_runs(image, max_width, runs::White());
    throw std::runtime_error("color must be either \"black\" or \"white\".");
  }

  template<class T, class Color>
  void filter_tall_runs(T& image, size_t min_height, const Color& color) {
    image_filter_long_run(image.col_begin(), image.col_end(), min_height, color);
  }

  template<class T>
  void filter_tall_runs(T& image, size_t max_width, char* const& color_) {
    std::string color(color_);
    if (color == "black")
      return filter_tall_runs(image, max_width, runs::Black());
    else if (color == "white")
      return filter_tall_runs(image, max_width, runs::White());
    throw std::runtime_error("color must be either \"black\" or \"white\".");
  }

  template<class T, class Color>
  void filter_wide_runs(T& image, size_t min_width, const Color& color) {
    image_filter_long_run(image.row_begin(), image.row_end(), min_width, color);
  }

  template<class T>
  void filter_wide_runs(T& image, size_t max_width, char* const& color_) {
    std::string color(color_);
    if (color == "black")
      return filter_wide_runs(image, max_width, runs::Black());
    else if (color == "white")
      return filter_wide_runs(image, max_width, runs::White());
    throw std::runtime_error("color must be either \"black\" or \"white\".");
  }

  template<class T>
  int runlength_from_point(T& image, FloatPoint p, std::string color, std::string direction)
  { 
    bool color_tf;
    if (color == "white")
      color_tf = true;
    else if (color == "black")
      color_tf = false;
    else
      throw std::runtime_error("color must be either \"black\" or \"white\".");
    
    // corner point
    if ((p.x() == 0 && direction == "left") || 
        (p.x() == image.ncols() && direction == "right") || 
        (p.y() == 0 && direction == "top") || 
        (p.y() == image.nrows() && direction == "bottom"))
      return 0;

    // find first pixel of different color
    int count = 0;
    size_t i;
    if (direction == "top") {
      for (i = p.y()-1; i >= 0; i--, count++)
        if (is_black(image.get(Point(p.x(),i))) == color_tf)
          break;
    }
    else if (direction == "left") {
      for (i = p.x()-1; i >= 0; i--, count++)
        if (is_black(image.get(Point(i,p.y()))) == color_tf)
          break;
    }             
    else if (direction == "bottom") {
      for (i = p.y()+1; i <= image.nrows(); i++, count++)
        if (is_black(image.get(Point(p.x(),i))) == color_tf)
          break;
    }             
    else if (direction == "right") {
      for (i = p.x()+1; i <= image.ncols(); i++, count++)
        if (is_black(image.get(Point(i,p.y()))) == color_tf)
          break;
    }
    else
      throw std::runtime_error("direction must be either \"top\", \"bottom\", \"left\", or \"right\".");

    return count;
  }


///////////////////////////////////////////////////////////////////////////
// TO/FROM RLE
#ifndef GAMERA_NO_PYTHON

  template<class T>
  std::string to_rle(const T& image) {
    // White first
    std::ostringstream oss;

    for (typename T::const_vec_iterator i = image.vec_begin();
	 i != image.vec_end(); /* deliberately blank */) {
      typename T::const_vec_iterator start;
      start = i;
      run_end(i, image.vec_end(), runs::White());
      oss << int(i - start) << " ";
      start = i;
      run_end(i, image.vec_end(), runs::Black());
      oss << int(i - start) << " ";
    }

    return oss.str();
  }

  inline long next_number(char* &s) {
    // I would love to use istream::scan for this, but it's a GNU
    // extension.  Plus, this is probably faster anyway,
    // since it's more naive.

    // Scan through whitespace (literally, non-numeric)
    while (true) {
      if ((*s >= 9 && *s <= 13) || *s == 32)
	++s;
      else {
	if (*s >= '0' && *s <= '9')
	  break;
	if (*s == '\0')
	  return -1;
	throw std::invalid_argument("Invalid character in runlength string.");
      }
    }

    long number = 0;
    // Read in number
    for (; *s >= '0' && *s <= '9'; ++s) {
      number *= 10;
      number += *s - '0';
    }

    return number;
  }

  template<class T>
  void from_rle(T& image, const char *runs) {
    // White first

    char *p = const_cast<char *>(runs);
    // Outside the loop since we need to do a check at the end
    for (typename T::vec_iterator i = image.vec_begin();
	 i != image.vec_end(); /* deliberately blank */) {
      // white
      long run;
      run = next_number(p);
      if (run < 0)
	throw std::invalid_argument("Image is too large for run-length data");
      typename T::vec_iterator end = i + (size_t)run;
      if (end > image.vec_end())
	throw std::invalid_argument("Image is too small for run-length data");
      std::fill(i, end, white(image));
      i = end;
      // black
      run = next_number(p);
      if (run < 0)
	throw std::invalid_argument("Image is too large for run-length data");
      end = i + (size_t)run;
      if (end > image.vec_end())
	throw std::invalid_argument("Image is too small for run-length data");
      std::fill(i, end, black(image));
      i = end;
    }
  }

///////////////////////////////////////////////////////////////////////////
// Run iterators
  struct make_vertical_run {
    Rect operator() (const int start, const int end, const int column) {
      return Rect(Point(column, start), Point(column, end - 1));
    }
  };

  struct make_horizontal_run {
    Rect operator() (const int start, const int end, const int row) {
      return Rect(Point(start, row), Point(end - 1, row));
    }
  };

  template<class Image, class RunIterator>
  struct RowIterator : IteratorObject {
    typedef RowIterator<Image, RunIterator> SelfType;
    int init(Image& image) {
      m_offset_x = image.ul_x();
      m_offset_y = image.ul_y();
      m_it = m_begin = image.row_begin();
      m_end = image.row_end();
      return 1;
    }
    static PyObject* next(IteratorObject* self) {
      SelfType* so = (SelfType*)self;
      if (so->m_it == so->m_end)
	return NULL;
      RunIterator* iterator = iterator_new<RunIterator>();
      iterator->init(so->m_it.begin(), so->m_it.end(), (so->m_it - so->m_begin) + so->m_offset_y, so->m_offset_x);
      so->m_it++;
      return (PyObject*)iterator;
    }
    typename Image::row_iterator m_it, m_end, m_begin;
    size_t m_offset_x, m_offset_y;
  };

  template<class Image, typename RunIterator>
  struct ColIterator : IteratorObject {
    typedef ColIterator<Image, RunIterator> SelfType;
    int init(Image& image) {
      m_offset_x = image.ul_x();
      m_offset_y = image.ul_y();
      m_it = m_begin = image.col_begin();
      m_end = image.col_end();
      return 1;
    }
    static PyObject* next(IteratorObject* self) {
      SelfType* so = (SelfType*)self;
      if (so->m_it == so->m_end)
	return NULL;
      RunIterator* iterator = iterator_new<RunIterator>();
      iterator->init(so->m_it.begin(), so->m_it.end(), (so->m_it - so->m_begin) + so->m_offset_x, so->m_offset_y);
      so->m_it++;
      return (PyObject*)iterator;
    }
    typename Image::col_iterator m_it, m_end, m_begin;
    size_t m_offset_x, m_offset_y;
  };

  template<class Iterator, class RunMaker, class Color>
  struct RunIterator : IteratorObject {
    typedef RunIterator<Iterator, RunMaker, Color> SelfType;
    int init(Iterator begin, Iterator end, int sequence, size_t offset) {
      m_begin = m_it = begin;
      m_end = end;
      m_sequence = sequence;
      m_offset = offset;
      return 1;
    }
    static PyObject* next(IteratorObject* self) {
      SelfType* so = (SelfType*)self;
      PyObject* result = 0;
      while (so->m_it != so->m_end) {
	run_end(so->m_it, so->m_end, get_other_color(Color()));
	Iterator start = so->m_it;
	run_end(so->m_it, so->m_end, Color());
	if (so->m_it - start > 0) {
	  result = create_RectObject
	    (RunMaker()
	     ((start - so->m_begin) + so->m_offset, (so->m_it - so->m_begin) + so->m_offset, so->m_sequence));
	  break;
	}
      }
      return result;
    }

    Iterator m_begin, m_it, m_end;
    int m_sequence;
    size_t m_offset;
  };

  template<class T, class Color>
  PyObject* iterate_runs(T& image, const Color& color, const runs::Horizontal& direction) {
    typedef RowIterator<T, RunIterator<typename T::col_iterator, make_horizontal_run, Color> > Iterator;
    Iterator* iterator = iterator_new<Iterator>();
    iterator->init(image);
    return (PyObject*)iterator;
  }

  template<class T, class Color>
  PyObject* iterate_runs(T& image, const Color& color, const runs::Vertical& direction) {
    typedef ColIterator<T, RunIterator<typename T::row_iterator, make_vertical_run, Color> > Iterator;
    Iterator* iterator = iterator_new<Iterator>();
    iterator->init(image);
    return (PyObject*)iterator;
  }

  template<class T>
  PyObject* iterate_runs(T& image, char* const& color_, char* const& direction_) {
    std::string color(color_);
    std::string direction(direction_);
    if (color == "black") {
      if (direction == "horizontal") {
	return iterate_runs(image, runs::Black(), runs::Horizontal());
      } else if (direction == "vertical") {
	return iterate_runs(image, runs::Black(), runs::Vertical());
      }
    } else if (color == "white") {
      if (direction == "horizontal") {
	return iterate_runs(image, runs::White(), runs::Horizontal());
      } else if (direction == "vertical") {
	return iterate_runs(image, runs::White(), runs::Vertical());
      }
    }
    throw std::runtime_error("color must be either \"black\" or \"white\" and direction must be either \"horizontal\" or \"vertical\".");
  }

#endif // GAMERA_NOPYTHON

}

#endif