/usr/bin/ocr4gamera is in python-gamera.toolkits.ocr 1.2.2-2.
This file is owned by root:root, with mode 0o755.
The actual contents of the file can be viewed below.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 | #!/usr/bin/python
#
# Copyright (C) 2009-2010 Rene Baston, Christoph Dalitz
# 2014 Fabian Schmitt
# 2011-2014 Christoph Dalitz
#
# This program is free software; you can redistribute it and/or
# modify it under the terms of the GNU General Public License
# as published by the Free Software Foundation; either version 2
# of the License, or (at your option) any later version.
#
# This program is distributed in the hope that it will be useful,
# but WITHOUT ANY WARRANTY; without even the implied warranty of
# MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
# GNU General Public License for more details.
#
# You should have received a copy of the GNU General Public License
# along with this program; if not, write to the Free Software
# Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307, USA.
#
import codecs #keep an eye on encoding stuff... http://evanjones.ca/python-utf8.html
import sys
import time
import os.path
VERSION = "1.2.0"
def usage(returncode):
sys.stdout.write("Usage:\n\tocr4gamera -x <traindata> [options] <imagefile>\n" +\
"Options (can be short or long):\n" +\
"\t-v <int>, --verbosity=<int>\n" + \
"\t set verbosity level to <int>; possible values are\n" + \
"\t 0 (default): silent operation\n" + \
"\t 1: information on progress\n" + \
"\t >2: segmentation info is written to PNG files with prefix 'debug_'\n" +\
"\t-h, --help\n" + \
"\t this help message\n" +\
"\t--version\n" + \
"\t print version and exit\n" +\
"\t-d, --deskew\n" + \
"\t do a skew correction (recommended)\n" +\
"\t-mf <ws>, --median_filter=<ws>\n" +\
"\t smooth the input image with a median filter with window size <ws>\n" +\
"\t default is <ws>=0, which means no smoothing\n" +\
"\t-ds <s>, --despeckle=<s>\n" +\
"\t remove all speckle with size <= <s>\n" +\
"\t default is <s> = 0, which means no despeckling\n" +\
"\t-f, --filter\n" + \
"\t filter out connected components that are very big or very small\n" +\
"\t-a, --automatic_group\n" + \
"\t autogroup glyphs with classifier\n" +\
"\t-x <xml>, --xmlfile=<xml>\n" + \
"\t read training data from <xml>\n" +\
"\t-k <k>, --k=<k>\n" + \
"\t number of neighbors used by kNN classifier (default is <k> = 1)\n" +\
"\t-o <txt>, --output=<txt>\n" + \
"\t write recognized text to file <txt>\n" + \
"\t (otherwise it is written to stdout)\n" +\
"\t-od <dir>, --output_directory=<dir>\n" + \
"\t writes for each input image <img> the recognized text to '<dir>/<img>.txt\n" +\
"\t note that this option cannot be used in combination with -o (--outfile)\n" + \
"\t (otherwise it is written to stdout)\n" +\
"\t-c <csv>, --extra_chars_csvfile=<csv>\n" + \
"\t read additional class name conversions from file <csv>\n" + \
"\t <csv> must contain one conversion per line\n" +\
"\t-R <rules>, --heuristic_rules=<rules>\n" + \
"\t apply heuristic rules <rules> for disambiguation of some chars\n" + \
"\t <rules> can be 'roman' (default) or 'none' (for no rules)\n" +\
"\t-D, --dictionary_correction\n" + \
"\t dictionary correction (requires aspell or ispell)\n" +\
"\t-L <lang>, --dictionary_language=<lang>\n" + \
"\t language to be used by aspell (when option -D is set)\n" +\
"\t-e <int>, --edit_distance=<int>\n" + \
"\t dictionary correct only when edit distance not more than <int>\n" + \
"\t-ho, --hocr_out\n" +\
"\t writes output as hocr file (only works with the -o option)\n" + \
"\t-hi <hocrfile>, --hocr_in=<hocrfile>\n" +\
"\t uses an hocr input file for textline segmentation\n" )
sys.exit(returncode)
def correct(sentence, lang):
import os
from gamera.plugins.structural import edit_distance
from popen2 import Popen3
correct="\*"
incorrect="&"
#trim_signs = '.,!?;:"'
trim_signs = ('.',',','!','?',';',':','"')
spell_prog = 'aspell'
lang_opt = '-l'
new_sentence = ""
words = sentence.split(" ")
if(len(words) == 0):
return sentence
p = Popen3('%s' % spell_prog, True)
if opt.verbosity:
print 'Using %s for word-correction.\n' % spell_prog
if p.childerr.readlines() != []:
if opt.verbosity:
print '% is not installed\n' % spell_prog
spell_prog = 'ispell'
if opt.verbosity:
print 'Using % for word-correction.\n' % spell_prog
lang_opt = '-d'
p = Popen3('%s Q' % spell_prog, True)
if p.childerr.readlines() != ['ispell: specified file does not exist\n']:
print 'Wether aspell nor ispell is installed on your system. Please make sure to install either of this programs.'
exit
# open with local setting language
if (opt.lang == ''):
if opt.verbosity:
if spell_prog == 'aspell':
print 'No language was given. Will open aspell with locale-settings language.\n'
if spell_prog == 'ispell':
print 'No language was given. Will open ispell with default language.\n'
p = Popen3('%s -a' % spell_prog, True) # True is for also storing error object in return-value
# user chosen language
else:
p = Popen3('%s -a %s %s' % (spell_prog, lang_opt, lang), True)
out = p.fromchild.readline() # first line gives information about programm
if (out == '' ): #something went wrong
print p.childerr.readlines()
exit
word_count = len(words)
for word in words:
#word = word.strip(trim_signs)
sign = ""
if word.endswith(trim_signs):
sign = word[-1:]
word = word[:-1]
word_count = word_count - 1
if(correct_this(word)):
p.tochild.write('%s\n' % word.encode('utf-8'))
p.tochild.flush()
out = p.fromchild.readline()
while (out=='\n'):
out = p.fromchild.readline()
if(out[0] == '*'): #spell_prog says: word correct
new_sentence = new_sentence + word +sign
if(word_count):
new_sentence = new_sentence + " "
continue
elif(out[0] == '&'): #spell_prog says: word incorrect
out = out.split(" ")
if edit_distance(word, out[4][:-1]) <= opt.distance:
word = out[4][:-1].decode('utf-8')
elif opt.verbosity:
print('%d. word: \'%s\' was not corrected to \'%s\'. '
'Edit_distance: %i is larger than distance: %i.\n'
% (len(words)-word_count, word, out[4][:-1],
edit_distance(word, out[4][:-1]), opt.distance))
new_sentence = new_sentence + word + sign
if(word_count):
new_sentence = new_sentence + " "
return new_sentence
def correct_this(word):
for character in word:
if(character == "-"):
return False
if(character == "[" or character == "]"):
return False
if(character.isdigit()):
return False
if(word == word.upper()):
return False
return True
def line_to_hocr(line, nr):
id_s = " <span class='ocr_line' id='line_" + str(nr) + "' "
bbox_s = 'title="bbox ' + str(line.bbox.ul.x) + " " + str(line.bbox.ul.y) + " " + str(line.bbox.lr.x) + " " + str(line.bbox.lr.y) + '">'
text = ""
for word in line.words:
word_s = "<span class='ocrx_word' id='word_'" + str(line.words.index(word)) + "' " + 'title="bbox ' + str(word[0].ul.x) + " " + str(word[0].ul.y) + " " + str(word[0].lr.x) + " " + str(word[0].lr.y) + '">'
word_s += line.text.split(" ")[line.words.index(word)]
text += word_s + " </span>"
end = "<br></span>\n"
return id_s + bbox_s + text + end
class Options():
def __init__(self):
self.help = False
self.deskew = False
self.ccsfilter = False
self.auto_group = False
self.dict_correct = False
self.hocr_out = False
self.hocr_in = ""
self.verbosity = 0
self.outputfile = ""
self.outputdirectory = ""
self.trainfile = ""
self.lang = ""
self.distance = 2
self.extra_chars_csvfile = ""
self.heuristic_rules = "roman"
self.median_size = 0
self.speckle_size = 0
self.k = 1
#
# here starts the main program
#
opt = Options()
args = sys.argv[1:]
imagefiles = []
extra_chars_dict = {}
if(len(args) == 0):
usage(1)
i =0
while i< len(args):
# options without second parameter
if args[i] in ("-h", "--help"):
usage(0)
if args[i] == "--version":
print VERSION
sys.exit(0)
elif args[i] in ("-d", "--deskew"):
opt.deskew = True
elif args[i] in ("-f", "--filter"):
opt.ccsfilter = True
elif args[i] in ("-a", "--automatic_group"):
opt.auto_group = True
elif args[i] in ("-D", "--dictionary_correction"):
opt.dict_correct = True
elif args[i] in ("-ho"):
opt.hocr_out = True
# options with second parameter
# verbosity level
elif args[i] == "-hi":
i+=1
opt.hocr_in = args[i]
elif args[i].startswith("--hocr_in="):
opt.hocr_in = args[i][len("--hocr_in="):]
elif args[i] in ("-v"):
i+=1
opt.verbosity = int(args[i])
elif args[i].startswith("--verbosity="):
opt.verbosity = int(args[i][len("--verbosity="):])
# output file name
elif args[i] in ("-o"):
i+=1
opt.outputfile = args[i]
elif args[i].startswith("--output="):
opt.outputfile = args[i][len("--output="):]
# output directory
elif args[i] in ("-od"):
i+=1
opt.outputdirectory = args[i]
elif args[i].startswith("--output_directory="):
opt.outputdirectory = args[i][len("--output_directory="):]
# training data file
elif args[i] in ("-x"):
i+=1
opt.trainfile = args[i]
elif args[i].startswith("--xmlfile="):
opt.trainfile = args[i][len("--xmlfile="):]
# k for kNN
elif args[i] in ("-k"):
i+=1
opt.k = int(args[i])
elif args[i].startswith("--k="):
opt.k = int(args[i][len("--k="):])
# median filter size
elif args[i] in ("-mf"):
i+=1
opt.median_size = int(args[i])
elif args[i].startswith("--median_size="):
opt.median_size = int(args[i][len("--median_size="):])
# speckle size for despeckling
elif args[i] in ("-ds"):
i+=1
opt.speckle_size = int(args[i])
elif args[i].startswith("--despeckle="):
opt.speckle_size = int(args[i][len("--despeckle="):])
# dictionary language
elif args[i] in ("-L"):
i+=1
opt.lang = args[i]
elif args[i].startswith("--dictionary_language="):
opt.lang = args[i][len("--dictionary_language="):]
# edit distance for dictionary lookup
elif args[i] in ("-e"):
i+=1
opt.distance = int(args[i])
elif args[i].startswith("--edit_distance="):
opt.distance = int(args[i][len("--edit_distance="):])
# additional translations classname -> character
elif args[i] in ("-c"):
i+=1
opt.extra_chars_csvfile = args[i]
elif args[i].startswith("--extra_chars_csvfile="):
opt.extra_chars_csvfile = args[i][len("--extra_chars_csvfile="):]
# heuristic disambiguation rules
elif args[i] in ("-R"):
i+=1
opt.heuristic_rules = args[i].lower()
elif args[i].startswith("--heuristic_rules="):
opt.heuristic_rules = args[i][len("--heuristic_rules="):].lower()
# unknown option
elif args[i][0] == '-':
print "Error: option %s does not exist" % args[i]
usage(1)
else:
# we assume it is an imagefile
imagefiles.append(args[i])
i+=1
# some plausibility checks
if opt.trainfile == "":
sys.stderr.write("Error: no training data given\n")
sys.exit(1)
if len(imagefiles) == 0:
sys.stderr.write("Error: no image file given\n")
sys.exit(1)
if len(imagefiles) > 1 and opt.outputdirectory == "":
sys.stderr.write("Error: for multiple image files option -od (--output_directory) must be given\n")
sys.exit(1)
if opt.outputdirectory != "" and not os.path.isdir(opt.outputdirectory):
sys.stderr.write("Error: output directory '" + opt.outputdirectory +"' is not a proper directory\n")
sys.exit(1)
for imagefile in imagefiles:
if not os.path.exists(imagefile):
sys.stderr.write("Error: image file '" + imagefile + "' not found\n")
sys.exit(1)
if not(opt.hocr_in == "") and not(opt.outputdirectory == ""):
sys.stderr.write("hocr-input doesn't works with -od option\n")
sys.exit(1)
if opt.hocr_out and opt.outputdirectory == "" and opt.outputfile == "":
sys.stderr.write("hocr-output does only works with an output option\n")
sys.exit(1)
# we import Gamera after parsing the command line arguments so that
# in case of a command line error the script can be aborted beforehand
from gamera.core import *
init_gamera()
from gamera import knn
from gamera.plugins import pagesegmentation
from gamera.plugins.pagesegmentation import textline_reading_order
from gamera.classify import ShapedGroupingFunction
from gamera.plugins.image_utilities import union_images
from gamera.toolkits.ocr.ocr_toolkit import *
from gamera.toolkits.ocr.classes import Textline,ClassifyCCs,Page,hocrPage
# load trainingsdata only once for all images
cknn = knn.kNNInteractive([], ["aspect_ratio", "fourier_broken", "moments", "volume64regions", "nholes_extended"], 0)
if opt.k > 0:
cknn.num_k = opt.k
cknn.from_xml_filename(opt.trainfile)
# loop over all input images
for imagefile in imagefiles:
if opt.verbosity > 0:
print "processing file '" + imagefile + "' ..."
img = load_image(imagefile)
if img.data.pixel_type != ONEBIT:
img = img.to_onebit()
if opt.outputdirectory != "":
opt.outputfile = os.path.join(opt.outputdirectory, os.path.basename(imagefile) + ".txt")
if opt.extra_chars_csvfile != "":
f = codecs.open(opt.extra_chars_csvfile, "r", encoding='utf-8')
for line in f:
classname, char = line.split(',', 2)[:2]
classname = classname.strip()
char = char.strip("\n\r")
extra_chars_dict[classname] = char
f.close()
if opt.median_size > 0:
img = img.rank((opt.median_size*opt.median_size+1)/2, opt.median_size)
if opt.speckle_size > 0:
img.despeckle(opt.speckle_size)
if opt.ccsfilter:
ccs = img.cc_analysis()
print "filter started on",len(ccs) ,"elements..."
median_black_area = median([cc.black_area()[0] for cc in ccs])
newccs = []
for cc in ccs:
if cc.black_area()[0] > (median_black_area * 10):
cc.fill_white()
else:
new_ccs.append(cc)
for cc in ccs:
if cc.black_area()[0] < (median_black_area / 10):
cc.fill_white()
else:
new_ccs.append(cc)
print "filter done:", len(ccs)-len(newccs), "of", len(ccs), "CCs deleted."
ccs = new_ccs
if opt.deskew:
if opt.verbosity > 0:
print "\ntry to skew correct..."
rotation = img.rotation_angle_projections(-10,10)[0]
img = img.rotate(rotation,0)
if opt.verbosity > 0:
print "rotated with",rotation,"angle"
if opt.auto_group:
if(opt.ccsfilter):
the_ccs = ccs
else:
the_ccs = img.cc_analysis()
median_cc = int(median([cc.nrows for cc in the_ccs]))
autogroup = ClassifyCCs(cknn)
autogroup.parts_to_group = 3
autogroup.grouping_distance = max([2,median_cc / 8])
if opt.hocr_in == "":
p = Page(img, classify_ccs=autogroup)
else:
p = hocrPage(img, opt.hocr_in, classify_ccs=autogroup)
img.reset_onebit_image()
if opt.verbosity > 0:
print "autogrouping glyphs activated."
print "maximal autogroup distance:", autogroup.grouping_distance
else:
if opt.hocr_in == "":
p = Page(img)
else:
p = hocrPage(img, opt.hocr_in)
if opt.verbosity > 0:
print "start page segmentation..."
t = time.time()
p.segment()
if opt.verbosity > 0:
t = time.time() - t
print "\t segmentation done [",t,"sec]"
if opt.verbosity > 1:
rgbfilename = "debug_lines.png"
rgb = p.show_lines()
rgb.save_PNG(rgbfilename)
print "file '%s' written" % rgbfilename
rgbfilename = "debug_chars.png"
rgb = p.show_glyphs()
rgb.save_PNG(rgbfilename)
print "file '%s' written" % rgbfilename
rgbfilename = "debug_words.png"
rgb = p.show_words()
rgb.save_PNG(rgbfilename)
print "file '%s' written" % rgbfilename
if opt.outputfile == "":
sys.stdout = codecs.getwriter('utf-8')(sys.stdout)
if opt.hocr_out:
opt.outputfile += ".html"
f = codecs.open(opt.outputfile, "a", "utf-8")
start_text = '''<html>
<head>
<meta charset="utf-8"/>
<title></title>
<meta />
</head>
<body>
<div class='ocr_page' id='page_1' title='image "''' + imagefile + '"; bbox ' + str(img.ul.x) + " " + str(img.ul.y) + " " + str(img.lr.x) + " " + str(img.lr.y) + """; ppageno 0'>
"""
f.write(start_text)
f.flush()
f.close()
for line in p.textlines:
if opt.ccsfilter:
if(len(line.glyphs) < 2): #a line with one or no glyph is useless
continue
cknn.classify_list_automatic(line.glyphs)
if(opt.ccsfilter): #lines with a median confidence lower than 0.005 should be useless too
if(median([glyph.get_confidence() for glyph in line.glyphs]) < 0.005):
continue
line.sort_glyphs()
line.text = textline_to_string(line, heuristic_rules=opt.heuristic_rules, extra_chars_dict=extra_chars_dict)
if opt.dict_correct:
line.text = correct(line.text, opt.lang)
line_text = line.text
if opt.outputfile != "":
f = codecs.open(opt.outputfile, "a", "utf-8")
if not opt.hocr_out:
line_text = line_text + "\n"
else:
line_text = line_to_hocr(line, p.textlines.index(line))
f.write(line_text)
f.flush()
f.close()
else:
print line_text
if opt.hocr_out:
f = codecs.open(opt.outputfile, "a", "utf-8")
end_text = """ </div>
</body>
</html>
"""
f.write(end_text)
f.flush()
f.close()
if opt.verbosity > 0 and opt.outputfile != "":
print "text has been written to file", opt.outputfile
|